Werkstoffverhalten einer TRIP/TWIP-fähigen CrMnNi-Stahlgusslegierung bis zu hohen Dehnraten*
-
Lutz Krüger
, Steffen Wolf , Stefan Martin , Markus Rüssel , Ulrich Martin , Andreas Jahn , Andreas Weiß und Piotr Scheller
Kurzfassung
Das Fließspannungsverhalten einer hochlegierten metastabilen Stahlgusslegierung wurde in einem weiten Bereich der Dehnrate (4·10−4 s−1 bis 2200 s−1) unter Zug- und Druckbeanspruchung untersucht. Dabei wurde ein ausgeprägter TRIP(TRansformation Induced Plasticity)-Effekt der austenitischen Legierung auf CrMnNi-Basis beobachtet, welcher zu hohen Festigkeiten und exzellenter Verformbarkeit führt. Bei Temperaturen oberhalb von 60°C bis 100°C zeigte sich zusätzlich eine mechanische Zwillingsbildung (TWIP- Effekt). Ein besonderes Augenmerk lag auf der Untersuchung der durch die mechanische Beanspruchung hervorgerufenen Mikrostrukturentwicklung. Es wurde festgestellt, dass erhöhte Beanspruchungsgeschwindigkeiten wesentlich das Werkstoffverhalten der untersuchten Legierungen beeinflussen. Mit steigender Dehnrate erfolgt eine Erwärmung der Probe, welche der Entstehung von α'-Martensit entgegenwirkt und so maßgeblich das Verfestigungsverhalten des Werkstoffes beeinflusst.
Abstract
The mechanical behaviour of a high alloyed and meta-stable cast steel alloy was examined under tensile and compressive loading in a wide range of strain rate (4·10−4 s−1 up to 2200 s−1). The CrMnNi-based alloy showed a distinctive TRIP-effect, resulting in high strength and also excellent ductility. Additionally, mechanical twinning (TWIP-effect) was observed at temperatures above 60 °C up to 100 °C. A special focus was given to reveal the change in microstructure through mechanical loading. It was found, that there is a significant influence of higher strain rates on mechanical behaviour of the investigated alloy. Heating of the specimen is the consequence of rising strain rates, hindering the formation of α'-martensite and affecting the work hardening of this material strongly.
Literatur
1 T.Angel: Formation of Martensite in Austenitic stainless steels, Journal of the Iron and Steel Institute177 (1954), S. 165–176Suche in Google Scholar
2 Schumann: Verformungsinduzierte Martensitbildung in austenitischen Stählen, Kristall und Technik (1975), S. 363–37010.1002/crat.19750100409Suche in Google Scholar
3 O.Gräßel, L.Krüger, G.Frommeyer, L. W.Meyer: High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development – properties – application, International Journal of Plasticity16 (2000), S. 1391–140910.1016/S0749-6419(00)00015-2Suche in Google Scholar
4 A.Weiß, H.Gutte, P. R.Scheller: Deformation induced martensite formation and its effect on transformation induced plasticity (TRIP), Steel Research International77 (2006), S. 727–732Suche in Google Scholar
5 S.Martin, S.Wolf, U.Martin, L.Krüger, A.Jahn: Investigations on martensite formation in CrMnNi-TRIP steels, ESOMAT 2009 Prag, 05022 (2009), EDP Sciences10.1051/esomat/200905022Suche in Google Scholar
6 F.Lecroisey, A.Pineau: Martensitic Transformations induced by plastic deformation in the Fe-Ni-Cr-C System, Metallurgical Transactions A3 (1972), S. 387–396Suche in Google Scholar
7 L.Remy, A.Pineau: Twinning and strain-induced F.C.C. → H.C.P. transformation in the Fe-Mn-Cr-C System, Materials Science and Engineering28 (1977), S. 99–10710.1016/0025-5416(77)90093-3Suche in Google Scholar
8 K.Sato, M.Ichinose, Y.Hirotsu, Y.Inoue: Effects of deformation induced phase transformation and twinning on the mechanical properties of Austenitic Fe-Mn-Al Alloys, The Iron and Steel Institute of Japan International29 (1989), S. 868–87710.2355/isijinternational.29.868Suche in Google Scholar
9 N.Hashimoto, T.S.Byun: Deformation-induced martensite formation and dislocation-channeling in neutron-irradiated 316 stainless steel, Journal of Nuclear Materials367–370 (2007), S. 960–96510.1016/j.jnucmat.2007.03.204Suche in Google Scholar
10 A.Jahn, A.Kovalev, A.Weiß, P. R.Scheller, S.Wolf, L.Krüger, S.Martin, U.Martin: Mechanical properties of high alloyed cast and rolled CrMnNi TRIP steels with varying Ni contents, ESOMAT 2009 Prag, 05013 (2009), EDP Sciences10.1051/esomat/200905013Suche in Google Scholar
11 J. A.Lichtenfeld, M. C.Mataya, C. J.van Tyne: Effect of strain rate in stress-strain behavior of alloy 309 and 304L austenitic stainless steel, Metallurgical and Materials Transactions A37A (2006), S. 147–16110.1007/s11661-006-0160-5Suche in Google Scholar
12 J.Talonen: Effect of strain-induced α’-Martensite transformation on mechanical properties of metastable austenitic stainless steels, Dissertation, Helsinki University of Technology (2007), URL: http://lib.tkk.fi/Diss/2007/isbn9789512287802/Suche in Google Scholar
13 V.Talyan, R. H.Wagoner, J. K.Lee: Formability of Stainless steel, Metallurgical and Materials TransactionsA29A (1998), S. 2161–2172Suche in Google Scholar
14 L. W.Meyer, N.Herzig, T.Halle, F.Hahn, L.Krüger, K. P.Staudhammer: A basic approach for strain rate dependent energy conversion including heat transfer effects: An experimental and numerical study, Journal of Materials Processing Technology182 (2007), S. 319–32610.1016/j.jmatprotec.2006.07.040Suche in Google Scholar
15 J.Talonen, H.Hänninen: Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels, Acta Materialia55 (2007), S. 6108–611810.1016/j.actamat.2007.07.015Suche in Google Scholar
16 R.Schramm, R.Reed: Stacking fault energies of seven commercial austenitic stainless steels, Metallurgical Transactions A6 (1975), S. 1345–135110.1007/BF02641927Suche in Google Scholar
17 G. T.Gray: Classic Split-Hopkinson pressure bar testing, ASM-Handbook, ASM International8 (2000), S. 462–47610.31399/asm.hb.v08.a0003296Suche in Google Scholar
18 S.Nemat-Nasser: High strain rate tension and compression tests, ASM-Handbook, ASM International8 (2000), S. 429–44610.31399/asm.hb.v08.a0003294Suche in Google Scholar
19 S.Abdel-Malek: Verformungs- und Versagensverhalten ausgewählter niedrig legierter Stähle unter Variation von Temperatur, Verformungsgeschwindigkeit und Spannungszustand, Dissertation Technische Universität Chemnitz (2006), URL: http://archiv.tu-chemnitz.de/pub/2006/0079/Suche in Google Scholar
20 J.Talonen, P.Aspegren, H.Hänninen: Comparison of different methods for measuring strain induced α’-martensite content in austenitic steels, Materials Science and Technology 20 (2004), S. 1506–1512Suche in Google Scholar
21 G. B.Olson, M.Cohen: Kinetics of strain-induced martensitic nucleation, Metallurgical Transactions A6 (1975), S. 791–79510.1007/BF02672301Suche in Google Scholar
22 J. R.Patel, M.Cohen: Criterion for the action of applied stress in the martensitic transformation, Acta Metallurgica1 (1953), S. 531–53810.1016/0001-6160(53)90083-2Suche in Google Scholar
© 2010, Carl Hanser Verlag, München
Artikel in diesem Heft
- Inhalt/Contents
- Inhalt
- Fachbeiträge/Technical Contributions
- Herausforderungen bei der Charakterisierung neuer Stähle*
- Ein neues Prüfverfahren zur Untersuchung der Rissbildung beim Feuerverzinken von Stahl*
- Werkstoffverhalten einer TRIP/TWIP-fähigen CrMnNi-Stahlgusslegierung bis zu hohen Dehnraten*
- Erweiterte Werkstoffprüfverfahren zur Charakterisierung von Leichtbaublechwerkstoffen im Hinblick auf die Kantenrisssensitivität*
- Analysis Techniques for Eddy Current Imaging of Carbon Fiber Materials*
- Hydrogen Influence on the Mechanical Behaviour of High Strength Steel
- Procedures for Corrosion Testing and Corrosion Failure Analysis
- Entwicklung von aufwandsoptimierten Prüfmethoden zur Charakterisierung und Harshnessbeurteilung von Luftfedern
- Residual Stress Relaxation and Surface Hardness of a 2024-t351 Aluminium Alloy
- Quality and Properties of the Friction Stir Welded AA2024-T4 Aluminium Alloy at Different Welding Conditions
- Vorschau/Preview
- Vorschau
Artikel in diesem Heft
- Inhalt/Contents
- Inhalt
- Fachbeiträge/Technical Contributions
- Herausforderungen bei der Charakterisierung neuer Stähle*
- Ein neues Prüfverfahren zur Untersuchung der Rissbildung beim Feuerverzinken von Stahl*
- Werkstoffverhalten einer TRIP/TWIP-fähigen CrMnNi-Stahlgusslegierung bis zu hohen Dehnraten*
- Erweiterte Werkstoffprüfverfahren zur Charakterisierung von Leichtbaublechwerkstoffen im Hinblick auf die Kantenrisssensitivität*
- Analysis Techniques for Eddy Current Imaging of Carbon Fiber Materials*
- Hydrogen Influence on the Mechanical Behaviour of High Strength Steel
- Procedures for Corrosion Testing and Corrosion Failure Analysis
- Entwicklung von aufwandsoptimierten Prüfmethoden zur Charakterisierung und Harshnessbeurteilung von Luftfedern
- Residual Stress Relaxation and Surface Hardness of a 2024-t351 Aluminium Alloy
- Quality and Properties of the Friction Stir Welded AA2024-T4 Aluminium Alloy at Different Welding Conditions
- Vorschau/Preview
- Vorschau