Startseite Hydrogen Influence on the Mechanical Behaviour of High Strength Steel
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Hydrogen Influence on the Mechanical Behaviour of High Strength Steel

  • Silvina Hereñú , Alberto Armas , Elena Brandaleze und Graciela Mansilla
Veröffentlicht/Copyright: 28. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Though numerous studies have been devoted to hydrogen embrittlement in steels, up to date there is not a general agreement about the effect of hydrogen on the mechanical behaviour. The purpose of this paper is to analyze the influence of hydrogen on the mechanical response of high strength steels. Samples were cathodically charged with hydrogen, previous to low cyclic fatigue and tensile tests at room temperature. The presence of hydrogen produces softening effects on the cyclic behaviour and improvements in the fatigue life for low hydrogen contents. The stress-strain curves of tensile tests on pre-charged samples depend on the strain rate imposed. Both tensile and fatigue response could be explained by the hydrogen enhancement of dislocation mobility mechanism.

Kurzfassung

Obwohl sich eine Vielzahl an Studien mit der Wasserstoffversprödung in Stählen beschäftigt hat, gibt es bis heute keine Übereinstimmung über die Wirkung von Wasserstoff auf das mechanische Verhalten. Dieser Artikel beschäftigt sich mit der Analyse des Einflusses von Wasserstoff auf die mechanische Reaktion von hochfestem Stahl. Proben wurden vor zyklischen Ermüdungs- und Zugtests bei Raumtemperatur kathodisch mit Wasserstoff geladen. Das Vorhandensein von Wasserstoff führt oft zu Erweichungseffekten im zyklischen Verhalten und Verbesserungen der Ermüdungsbeständigkeit für geringe Wasserstoffgehalte. Die Spannungs-Dehnungs-Kurven der Zugtests für die vorgeladenen Proben hängen von der angelegten Dehnungsgeschwindigkeit ab. Sowohl die Zug- als auch die Ermüdungsreaktion können durch die hydrogene Verbesserung des Versetzungsbeweglichkeitsmechanismus erklärt werden.


Prof. Dr. Silvina Hereñú, born 1968, received her MSc and her PhD in Physics at the National University of Rosario, Argentina. She is currently Professor at the National Technology University of San Nicolas, Argentina, and Researcher of the National Council of Scientific Research and Technology (CONICET), Argentina.

Prof. Dr. Elena Brandaleze, born 1959, studied Metallurgical Engineering at the National Technology University of San Nicolas, Argentina and received a PhD in Engineering at the National University of Rosario, Argentina. She is currently professor and head of the Metallurgical Department at the National Technology University of San Nicolas, Argentina and Researcher of the National Technology University of San Nicolas, Argentina.

Prof. Dr. Graciela Mansilla, born 1963, received her MSc and PhD in Physics at the National University of Rosario, Argentina. She is currently professor and researcher at the National Technology University of San Nicolas, Argentina.

Prof. Dr. Alberto Armas, born 1945, received his MSc and PhD in Physics at the National University of Rosario, Argentina. He preformed post-doctoral studies and has been invited researcher at the Forschungszentrum Karlsruhe, Germany. He also was invited professor at the Ecole Centrale de Lille, France. He is currently Professor at the National University of Rosario. Argentina.


References

1 R. A.Oriani, P.H.Josephic: Equilibrium aspects of hydrogen-induced cracking of steels, Acta Metallurgica, Vol.22, (1974) pp. 10651074.Suche in Google Scholar

2 S.Komazaki, R.Maruyama, T.Misawa: Effect of applied cathodic potential on susceptibility to hydrogen embrittlement in high strength low alloy steel, ISIJ International, Vol23 (2003), No 4 pp. 475481.Suche in Google Scholar

3 P.Kubeãka, P.Váàová, P.Jon‰ta, F.Filu‰: The influence of surface characteristics on hydrogen embrittlement of carbon steels, Acta Metallurgica Slovaca 13, 4, (2007) pp. 495502.Suche in Google Scholar

4 T.Zakroczymski, A.Glowacka, W.Swiatnicki: Effect of hydrogen concentration on the embrittlement of a duplex stainless steel, Corrosion Science47 (2005) pp. 14031414.10.1016/j.corsci.2004.07.036Suche in Google Scholar

5 H. J.Maier, W.Popp, H.Kaesche: Effects of hydrogen on ductile fracture of a spheroidized low alloy steel, Materials Science and Engineering A191 (1995) pp. 1726.10.1016/0921-5093(94)09623-5Suche in Google Scholar

6 S. K.Singh, B.Sasmal: Effect of hydrogen on toughening of a low alloy steel, ISIJ International vol. 44 Nº1 (2004) pp. 203208.Suche in Google Scholar

7 A.M.Brass, J.Che?ne: Hydrogen uptake in 316L stainless steel: Consequences on the tensile properties, Corrosion Science48 (2006) pp. 32223242.10.1016/j.corsci.2005.11.004Suche in Google Scholar

8 V. A.Slezhkin, S.M.Belogiazov: Influence of structural changes in carbon steel surface layer while cycle deforming on hydrogen absorption, Journal of alloys and compounds356-357 (2003) pp. 310313.10.1016/S0925-8388(03)00246-9Suche in Google Scholar

9 N.K.Kuromoto, A.S.Guimaraes, C.M.Lepienski: Superficial and internal hydrogenation effects on the fatigue life of austenitic steels, Materials Science and Engineering A381 (2004) pp. 216222.10.1016/j.msea.2004.04.033Suche in Google Scholar

10 Y.Murakami, H.Matsunaga: The effect of hydrogen on fatigue properties of steels used for fuel cell system, International journal of fatigue28 (2006) pp. 15061520.10.1016/j.ijfatigue.2005.06.059Suche in Google Scholar

11 G.Han, D.Feng: Effects of hydrogen on behaviour of low cycle fatigue of 2.25Cr-1Mo steel, J. Mater Sci. Technol, Vol.11, (1995) pp. 358362.Suche in Google Scholar

12 H.Uyama, M.Nakashima, K.Morishige, Y.Mine, Y.Murakami: Effects of hydrogen charge on microscopic fatigue behaviour of annealed carbon steels, Fatigue Fract. Engng. Mater. Struct.29, (2006) pp. 10261074.10.1111/j.1460-2695.2006.01069.xSuche in Google Scholar

13 T.Schober, C.Dieker: Observation of local of hydrogen on nickel surfaces, Metallurgical Transactions A, 14 A, (1983) pp. 24402442.Suche in Google Scholar

14 A.Zielinski, P.Domzalicki: Hydrogen degradation of high-strength low-alloyed steels, Journal of Materials Processing Technology133 (2003) pp. 230235.10.1016/S0924-0136(02)00239-XSuche in Google Scholar

15 P.Sofronis, H.K.Birnbaum: Mechanics of the hydrogen-dislocation impurity interactions-I. increasing shear modulus, J. Mech. Phys. Solids 43.1 (1995) pp. 4990.10.1016/0022-5096(94)00056-BSuche in Google Scholar

16 I.M.Robertson: The effect of hydrogen on dislocation dynamics, Engineering Fracture Mechanics68 (2001) pp. 675692.10.1016/S0013-7944(01)00011-XSuche in Google Scholar

17 E.Sirois, H.K.Birnbaum: Effects of hydrogen and carbon on thermally activated deformation in nickel, Acta metal. Mater. Vol. 40. No. 6. (1992) pp. 13771385.Suche in Google Scholar

Published Online: 2013-05-28
Published in Print: 2010-09-01

© 2010, Carl Hanser Verlag, München

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/120.110168/html
Button zum nach oben scrollen