Lokale und systemische Reaktion auf Verschleißpartikel*
-
B. Burian
, M. A. Wimmer , J. Kunze , C. Sprecher , O. Schmitt and C. N. Kraft
Kurzfassung
Es ist bekannt, dass Abriebpartikel und ihre Korrosionsprodukte von chirurgischen/orthopädischen Implantaten zu einem Implantatversagen führen können. Mittels des Rückenhautkammermodels und der intravitalen Mikroskopie quantifizierten wir die mikrozirkulatorischen Parameter nach Konfrontation mit Titan- und Edelstahlabrieb sowie -platten. Obwohl kein genereller Vorteil von Platten gegenüber den Partikeln gezeigt werden konnte, vermochten Partikel, abhängig von ihrer Zusammensetzung, eine akute Inflammation zu induzie-ren, die zu einem Endothelschaden und schließlich zu einem Mikroperfusionsversagen führten. Darüber hinaus konnte mittels der Organ- und Blutanalyse eine systemische Verteilung von Partikeln, respektive der beinhalteten Elemente, nachgewiesen werden.
Abstract
It is known that wear debris and corrosion products of surgical implants may have profound consequences which can lead to an implant failure. Using the skinfold chamber model and intravital microscopy we quantified skeletal muscle microcirculatory parameters after confrontation with titanium and stainless steel wear debris, comparing these results with those of bulk materials. Though a general benefit of bulk versus debris could not be shown, we found that, depending on its constituents, wear debris is capable of eliciting an acute inflammation which may result in endothelial damage and subsequent failure of microperfusion. Furthermore a systemic distribution of wear, depending on his constituents, could be shown by organ- and blood analysis.
Literatur
1 Jacobs, J. J. et al.: Osteolysis and serum chromium elevations in patients with modular femoral intramedullary nails. 45th Annual Meeting of the Orthopaedic Research Society, Anaheim, California (1999) S. 965Search in Google Scholar
2 Vermes, C. et al.: The effects of particulate wear debris, cytokines, and growth factors on the functions of MG-63 osteoblasts. J Bone Joint Surg, 83 A (2001) S. 201–211Search in Google Scholar
3 Jacobs, J. J.; Gilbert, J. L.; Urban, R. M.: Corrosion of metal orthopaedic implants. J Bone J Surg80 A (1998) S. 268–282Search in Google Scholar
4 Glant, T. T.; Jacobs, J. J.: Response of three murine macrophage populations to particulate debris: bone resorption in organ cultures. J Orthop Res12 (1994) S. 720–73110.1002/jor.1100120515Search in Google Scholar
5 Moreland, J. R.: Mechanisms of failure in total knee arthroplasty. Clin Orthop Rel Res226 (1988) S. 49–64Search in Google Scholar
6 Chen, F. S. et al.: In vitro and in vivo activation of polymorphonuclear leukocytes in response to particulate debris. J Biomed Mater Res48 (1999) S. 904–91210.1002/(SICI)1097-4636(1999)48:6<904::AID-JBM21>3.0.CO;2-5Search in Google Scholar
7 Black, J. et al.: Metallosis associated with a stable titanium-alloy femoral component in total hip replacement. A case report. J Bone Joint Surg72 A (1990) S. 126–130Search in Google Scholar
8 Jacobs, J. J. et al.: Release and excretion of metal in patients who have a total hip- replacement componenet made of titanium-base alloy. J Bone Joint Surg, 73 A (1991) S. 1475–1486Search in Google Scholar
9 JacobsJ.J. et al.: Local and distant products from modularity. Clin Orthop319 (1995) S. 94–105Search in Google Scholar
10 Agins, H. J. et al.: Metallic wear in failed titanium-alloy total hip replacements. A histological and quantitative analysis. J Bone Joint Surg, 70 A (1988) S. 347–356Search in Google Scholar
11 Case, C. P. et al.: Widespread dissemination of metal debris from implants. J Bone Joint Surg, 76 B (1994) S. 701–712Search in Google Scholar
12 Dorr, L. D. et al.: Histologic, biochemical, and ion analysis of tissue and fluids retrieved during total hip arthroplasty. Clin Orthop261 (1990) S. 82–95Search in Google Scholar
13 Sun, Z. L.; Wataha, C.; Hanks, C. T.: Effects of metal ions on osteoblast-like cell metabolism and differentiation. J Biomed Mater Res34 (1997) S. 29–3710.1002/(SICI)1097-4636(199701)34:1<29::AID-JBM5>3.0.CO;2-PSearch in Google Scholar
14 Charnley, J.; Halley, D. K.: Rate of wear in total hip replacement. Clin Orthop112 (1975) S. 170–179Search in Google Scholar
15 Rae, T.: A study on the effects of particulate metals of orthopaedic interest on murine macrophages in vitro. J Bone Joint Surg57 B (1975) S. 444–450Search in Google Scholar
16 Urban, R. M. et al.: Migration of corrosion products from modular hip prostheses. Particle microanalysis and histopathological findings. J Bone Joint Surg, 76 A (1994) S. 1345–1359Search in Google Scholar
17 Williams, D. F.; Meachim, G.: A combined metallurgical and histological study of tissue-prosthesis interactions in orthopaedic patients. J Biomed Mater Res8 (1974) S. 1–910.1002/jbm.820080303Search in Google Scholar
18 Winter, G. D.: Tissue reactions to metallic wear and corrosion products in human patients. J Biomed Mater Res8 (1974) S. 11–2610.1002/jbm.820080304Search in Google Scholar
19 Winter, G. D.: Wear and corrosion products in tissues and the reactions they provoke. In Williams, D. (Hg.), Biocompatibility of Implant Materials, London (1976) S. 28–39Search in Google Scholar
20 Galante, J. O. et al.: The biologic effects of implant materials. J Orthop Res9 (1991) S. 760–77510.1002/jor.1100090516Search in Google Scholar
21 Goldring, S. R. et al.: The synovial-like membrane at the bone-cement interface in loose total hip replacements and its proposed role in bone lysis. J Bone Joint Surg65 A (1983) S. 575–584Search in Google Scholar
22 Howie, D. W.: Tissue response in relation to type of wear particle around failed hip arthroplasties. J Arthroplasty5 (1990) S. 337–34810.1016/S0883-5403(08)80093-9Search in Google Scholar
23 Yao, J. L. et al.: The potential role of fibroblasts in periprosthetic osteolysis: fibroblast response to titanium particles. J Bone Mineral Res10 (1995) S. 1417–142710.1002/jbmr.5650100920Search in Google Scholar
24 Willert, H. G.; Semlitsch, M.: Reactions of the articular capsule to wear products of artificial joint prostheses. J Biomed Mater Res11 (1977) S. 157–16410.1002/jbm.820110202Search in Google Scholar
25 Harris, W. H. et al.: Extensive localized bone resorption in the femur following total hip replacement. J Bone Joint Surg A (1976) S. 612–618Search in Google Scholar
26 Willert, H. G.; Ludwig, J.; Semlitsch, M.: Reaction of bone to methacrylate after hip arthroplasty: A long-term gross, light microscopic, and scanning electron microscopic study. J Bone Joint Surg56A (1974) S. 1368–1382Search in Google Scholar
27 Witt, J. D.; Swann, M.: Metal wear and tissue response in failed titanium alloy total hip replacements. J Bone Joint Surg B (1991) S. 559–563Search in Google Scholar
28 Kohilas, K. et al.: Effect of prosthetic titanium wear debris on mitogen-induced monocyte and lymphoid activation. J Biomed Mater Res47 (1999) S. 95–10310.1002/(SICI)1097-4636(199910)47:1<95::AID-JBM14>3.0.CO;2-8Search in Google Scholar
29 Amstutz, H. C. et al.: Mechanism and clinical significance of wear debris-induced osteolysis. Clin Orthop Rel Res276 (1992) S. 7–18Search in Google Scholar
30 Cooper, R. A. et al.: Polyethylene debris- induced osteolysis and loosening in uncemented total hip arthroplasty. A cause of late failure. J Arthroplasty7 (1992) S. 285–29010.1016/0883-5403(92)90050-ZSearch in Google Scholar
31 Dowd, J. E. et al.: Aseptic loosening in uncemented total hip arthroplasty in a canine model. Clin Orthop Rel Res319 (1995) S. 106–121Search in Google Scholar
32 Murray, D. W.; Rushton, N.: Macrophages stimulate bone resorption when they phagocytose particles. J Bone Joint Surg72 B (1990) S. 988–992Search in Google Scholar
33 Murray, D. W.; Rushton, N.: Mediators of bone resorption around implants. Clin Orthop Rel Res281 (1992) S. 295–304Search in Google Scholar
34 Lee, J.-M. et al.: Size of metallic and polyethylene debris particles in failed cemented total hip replacements. J Bone Joint Surg B (1992) S. 380–384Search in Google Scholar
35 McGeachie, J. K.; Grounds, M. D.: Initiation and duration of muscle precursor replication after mild and severe injury to skeletal muscle of mice: an autoradiographic study. Cell Tissue Res248 (1987) S. 125–13010.1007/BF01239972Search in Google Scholar
36 Krettek, C.: Fraktur und Weichteilschaden. Chirurg69 (1998) S. 684–70010.1007/s001040050477Search in Google Scholar
37 Endrich, B.; Asaishi, K.; Götz, A.; Messmer, K.: Technical report - a new chamber technique for microvascular studies in anaesthetised hamsters. Res Exp Med177 (1980) S. 125–13410.1007/BF01851841Search in Google Scholar
38 Menger, M. D.; Lehr, H.-A.: Scope and perspectives of intravital microscopy – bridge over from in vitro to in vivo. Immunol Today14 (1993) S. 519–52210.1016/0167-5699(93)90179-OSearch in Google Scholar
39 Ap Gwynn, I.; Wilson, C.: Characterizing fretting particles by analysis of SEM images. European Cells and Materials1 (2001) S. 1–11Search in Google Scholar
40 Kraft, C. N.; Burian, B.; Diedrich, O.; WimmerM. A.: Implications of orthopaedic fretting corrosion particles. J Mat Sci, Mat Med (2001)Search in Google Scholar
41 Pries, A. R.: A versatile video image analysis system for microcirculatory research. Int J Microcirc Clin Exp7 (1988) S. 327–345Search in Google Scholar
42 Brunner, J.; Krummenauer, F.; Lehr, H.-A.: Quantification of video-taped images in microcirculation research using inexpensive imaging software (Adobe Photoshop). Microcirculation7 (2000) S. 103–107Search in Google Scholar
© 2005, Carl Hanser Verlag, München
Articles in the same Issue
- Inhalt/Contents
- Inhalt
- Fachbeiträge/Technical Contributions
- Abriebverhalten von zementierten Hüftendoprothesen-Stielen*
- Lokale und systemische Reaktion auf Verschleißpartikel*
- Erhöhung des Range of Motion durch große Keramikköpfe und ein spezielles Design des Keramikinlays*
- In-vivo-Studie zur knöchernen Integration von RGD-Peptid-beschichteten und unbeschichteten metallischen Implantaten*
- Oberflächenmodifikation von Biomaterialien durch Mikrostrukturierung*
- ATZ – Ein neues keramisches Material mit einem hohen Potenzial in der Gelenkendoprothetik*
- Monte-Carlo-Simulation und CAD
- Wolframkarbideinschlüsse in Flugtriebwerksrotoren
- Werkstoffkundliche Aspekte der Oberflächenbearbeitung von Metallen
- Vorschau/Preview
- Vorschau
Articles in the same Issue
- Inhalt/Contents
- Inhalt
- Fachbeiträge/Technical Contributions
- Abriebverhalten von zementierten Hüftendoprothesen-Stielen*
- Lokale und systemische Reaktion auf Verschleißpartikel*
- Erhöhung des Range of Motion durch große Keramikköpfe und ein spezielles Design des Keramikinlays*
- In-vivo-Studie zur knöchernen Integration von RGD-Peptid-beschichteten und unbeschichteten metallischen Implantaten*
- Oberflächenmodifikation von Biomaterialien durch Mikrostrukturierung*
- ATZ – Ein neues keramisches Material mit einem hohen Potenzial in der Gelenkendoprothetik*
- Monte-Carlo-Simulation und CAD
- Wolframkarbideinschlüsse in Flugtriebwerksrotoren
- Werkstoffkundliche Aspekte der Oberflächenbearbeitung von Metallen
- Vorschau/Preview
- Vorschau