A Comparative Spectral Study on the Interaction of Organic Dye Congo-Red with Selective Aqueous Micellar Media of CPC, Rhamnolipids and Saponin
- 
            
            
        Aniruddha Pal
        
Abstract
The present study is an investigation of the solubilising ability of natural and conventional surfactants saponin (sapindus saponin or reetha saponin), Rhamnolipids (RLs) and N-cetylpyridinium chloride (CPC) respectively via dye-surfactant interaction. The ionic dye Congo Red was examined by absorption spectroscopy method for the study. The dye interacted strongly with oppositely charged surfactant N-cetylpyridinium chloride in the pre-micellar concentration range and formed a stable dye-surfactant complex. The thermodynamic parameter, free energy change for all the systems was calculated at a constant temperature of 25°C. The ΔG0 value for N-cetylpyridinium chloride is found to be −33.269 kJ/mol while for saponin and rhamnolipids the values were −16.084 kJ/mol and −26.006 kJ/mol respectively. The values clearly indicate the efficiency of N-cetylpyridinium chloride surfactant compared to the other two surfactants. The present study aims to understand the dye solubilization in surfactant media in order to develop environmentally friendly, green and cost effective techniques.
Kurzfassung
Die vorliegende Studie ist eine Untersuchung zur Fähigkeit der natürlichen und konventionellen Tenside Saponin (Sapindus-Saponin oder Reetha-Saponin), Rhamnolipide (RL) und N-Cetylpyridiniumchlorid (CPC), einen organischen Farbstoff, aufgrund der Tensid-Farbstoff-Wechselwirkung zu solubilisieren. Für die Studie wurde der anionische Farbstoff Kongorot mittels Absorptionsspektroskopie untersucht. Der Farbstoff hatte starke Wechselwirkungen mit dem entgegengesetzt geladenen Tensid N-Cetylpyridiniumchlorid im vor-mizellaren Konzentrationsbereich und bildete einen stabilen Farbstoff-Tensid-Komplex. Der thermodynamische Parameter, die Änderung der Gibbs-Energie ΔG0, wurde für alle Systeme bei einer konstanten Temperatur von 25°C berechnet. Der ΔG0 Wert für N-Cetylpyridiniumchlorid beträgt −33,269 kJ/mol, die Werte für Saponin und Rhamnolipide sind −16,084 kJ/mol und −26,006 kJ/mol. Die Werte zeigen deutlich die Effizienz des N-Cetylpyridiniumchlorids im Vergleich zu den beiden anderen Tensiden. Die vorliegende Studie zielt darauf ab, die Farbstoff-Solubilisierung in Tensidmedien zu verstehen, um umweltfreundliche, grüne und kosteneffektive Techniken zu entwickeln.
References
1. Mondal, M. H., Malik, S., Roy, A., Saha, R. and Saha, B.: Modernization of surfactant chemistry in the age of gemini and bio-surfactants: a review, RSC Adv., 5 (2015) 92707–92718. 10.1039/C5RA18462BSuche in Google Scholar
2. Mondal, M. H., Ali, M. A., Pal, A. and Saha, B.: A Review on Micellar Catalyzed Oxidation Reactions of Organic Functional Groups in Aqueous Medium Using Various Transition Metals. Tenside Surf. Det.56 (2019) 516–525. 10.3139/113.110654Suche in Google Scholar
3. Mondal, M. H., Roy, A., Malik, S., Ghosh, A. and Saha, B.: Review on chemically bonded geminis with cationic heads: second-generation interfactantsRes. Chem. Intermed, 42 (2015) 1913–1928. 10.1007/s11164-015-2125-zSuche in Google Scholar
4. Malik, S., Saha, D., Mondal, M. H., Sar, P., Ghosh, A., Mahali, K. and Saha, B.: Micellar effect on hetero-aromatic nitrogen base promoted chromic acid oxidation of 1.3-propanediol in aqueous media at room temperatureJ. Mol. Liq.225 (2017) 207–216. 10.1016/j.molliq.2016.11.033Suche in Google Scholar
5. Kumar, D. and Rub, M. A.: Studies of interaction between ninhydrin and Gly-Leu dipeptide: Influence of cationic surfactants (m-s-m type Gemini). J. Mol. Liq.269 (2018) 1–7. 10.1016/j.molliq.2018.08.002Suche in Google Scholar
6. Kumar, D. and Rub, M. A.: Kinetic study of nickel-glycylglycine with ninhydrin in alkanediyl-α,ω-gemini (m-s-m type) surfactant system. J. Mol. Liq.240 (2017) 253–257. 10.1016/j.molliq.2017.05.088Suche in Google Scholar
7. Mondal, M. H., Sarkar, A., Maiti, T. K. and Saha, B.: Microbial assisted (pseudomonas sp.) production of novel bio-surfactant rhamnolipids and its characterisation by different spectral studiesJ. Mol. Liq.242 (2017) 873–878. 10.1016/j.molliq.2017.07.089Suche in Google Scholar
8. Malik, S., Mondal, M. H., Ghosh, A., De, S., Mahali, K., Bhattacharyya, S. S. and Saha, B.: Combination of Sodium Dodecylsulfate and 2, 2′-Bipyridine for Hundred Fold Rate Enhancement of Chromium (VI) Oxidation of Malonic Acid at Room Temperature: A Greener Approach J. Solut. Chem.45 (2016), 1043–1060. 10.1007/s10953-016-0494-6Suche in Google Scholar
9. Malik, S. Ghosh, A., Sar, P., Mondal, M. H., Mahali, K. and Saha, B.: Employment of different spectroscopic tools for the investigation of chromium (VI) oxidation of acetaldehyde in aqueous micellar medium. J Chem Sci129 (2017), 637–645. 10.1007/s12039-017-1276-4Suche in Google Scholar
10. Mondal, M. H., Malik, S., Garain, A., Mandal, S. and Saha, B.: Extraction of Natural Surfactant Saponin from Soapnut (Sapindusmukorossi) and its Utilization in the Remediation of Hexavalent Chromium from Contaminated Water. Tenside, Surf. Det.54 (2017) 519–529. 10.3139/113.110523Suche in Google Scholar
11. Purkait, M. K., DasGupta, S. and De, S.: Removal of dye from wastewater using micellar-enhanced ultrafiltration and recovery of surfactant. Sep. Purif. Technol.37 (2004) 81–92. 10.1016/j.seppur.2003.08.005Suche in Google Scholar
12. Purkait, M. K., DasGupta, S. and De, S.: Resistance in series model for micellar enhanced ultrafiltration of eosin dye J. Colloid Interface Sci.270 (2004) 496–506. PMid:14697718; 10.1016/j.jcis.2003.10.030Suche in Google Scholar
13. Simoncic, B. and Span, J.: A study of dye-surfactant interactions. Part 1. Effect of chemical structure of acid dyes and surfactants on the complex formation Dyes Pigments, 36 (1998) 1–14. 10.1016/S0143-7208(97)00001-6Suche in Google Scholar
14. Simoncic, B. and Kovac, F.: A study of dye–surfactant interactions. Part 2. The effect of purity of a commercial cationic azo dye on dye–surfactant complex formation Dyes Pigments, 40 (1998) 1–9. 10.1016/S0143-7208(98)00028-XSuche in Google Scholar
15. Bracko, S. and Span, J.: Conductometric investigation of dye–surfactant ion pair formation in aqueous solution. Dyes Pigments, 45 (2000) 97–102. 10.1016/S0143-7208(00)00016-4Suche in Google Scholar
16. Chowdhury, B., Mondal, M. H., Barman, M. K. and Saha, B.: A study on the synthesis of alkaline copper(III)-periodate (DPC) complex with an overview of its redox behavior in aqueous micellar media Res. Chem. Intermed, 45 (2018) 789–800. 10.1007/s11164-018-3643-2Suche in Google Scholar
17. Ghoreishi, S. M., Behpour, M. and Ghafari Farsami, A.: Study of interaction between a cationic surfactant and two anionic azo dyes by ion-selective electrode technique and spectrophotometry Dyes Pigments, 74 (2007) 585–589. 10.1016/j.dyepig.2006.03.023Suche in Google Scholar
18. Kuiper, J. M., Buwalda, R. T., Hulst, R. and Engberts, J. B. F. N.: Novel Pyridinium Surfactants with Unsaturated Alkyl Chains: Aggregation Behavior and Interactions with Methyl Orange in Aqueous Solution Langmuir, 17 (2001) 5216–5224. 10.1021/la010473zSuche in Google Scholar
19. Yang, J.: Interaction of surfactants and aminoindophenol dye J. Colloid. Interface. Sci.274 (2004) 237–243. PMid:15120298; 10.1016/j.jcis.2004.03.028Suche in Google Scholar PubMed
20. Khamis, M., Bulos, B., Jumean, F., Manassra, A. and Dakiky, M.: Azo dyes interactions with surfactants. Determination of the critical micelle concentration from acid–base equilibrium Dyes Pigments, 66 (2005) 179–183. 10.1016/j.dyepig.2004.09.012Suche in Google Scholar
21. Behera, P. K., Mohapatra, S., Patel, S. and Mishra, B. K.: Dye–surfactant interaction: solubilization of styryl pyridinium dyes of varying alkyl chain in alfa-olefinic sulfonate and linear alkyl benzene sulfonate solutions J. Photochem. Photobiol. A, 169 (2005) 253–260. 10.1016/j.jphotochem.2004.07.006Suche in Google Scholar
22. Gehlen, M. H., Ferreira, M. and Neumann, M. G.: Interaction of methyl orange with cationic micelles and its effect on dye photochemistry J. Photochem. Photobiol. A.87 (1995) 55–60. 10.1016/1010-6030(94)03956-USuche in Google Scholar
23. Dutta, R. K. and Bhat, S. N.: Interaction of phenazinium dyes and methyl orange with micelles of various charge types Colloids Surf. A.106 (1996) 127–134. 10.1016/0927-7757(95)03374-2Suche in Google Scholar
24. Jana, A. K. and Rajavenii, S.: Studies on the molecular interaction of phenazine dyes with Triton X-100 Spectrochim. Acta. A60 (2004) 2093–2097. PMid:15248991; 10.1016/j.saa.2003.10.041Suche in Google Scholar
25. Göktürk, S. and Tunçay, M.: Spectral studies of safranin-O in different surfactant solutions Spectrochim. Acta. A.59 (2003) 1857–1866. 10.1016/S1386-1425(02)00418-3Suche in Google Scholar
26. Pereira, R. V. and Gehlen, M. H.: Fluorescence of acridinic dyes in anionic surfactant solution Spectrochim. Acta. A.61 (2005) 2926–2932. PMid:16165033; 10.1016/j.saa.2004.11.009Suche in Google Scholar
27. Armarego, W. L. F. and Perrin, D. D.: Purification of Laboratory Chemicals. Butterworth-Heinemann: Oxford, 1997.Suche in Google Scholar
28. Mondal, M. H., Malik, S., De, S., Bhattacharyya, S. S. and Saha, B.: Employment and resurrection of surfactants in bipyridine promoted oxidation of butanal using bivalent copper at NTP. Res ChemIntermed43 (2017) 1651–1670. 10.1007/s11164-016-2721-6Suche in Google Scholar
29. Mondal, M. H., Malik, S. and Saha, B.: Characterization of Pyrene Solubilization in Selective Micellar Media of Novel Bio-degradable Natural Surfactant Saponin (Extracted from Soap Nut) and Conventional Surfactant SDBS in Presence and Absence of Common Salt NaCl Tenside, Surf. Det.54 (2017) 378–384. 10.3139/113.110519Suche in Google Scholar
30. Bielska, M., Cobczynska, A. and Prochaska, K.: Dye–surfactant interaction in aqueous solutions. Dyes and Pigments.80 (2009) 201–205. 10.1016/j.dyepig.2008.05.009Suche in Google Scholar
31. Awan, A. M. and Shah, S. S.: Hydrophobic interaction of amphiphilic hemicyanine dyes with cationic and anionic surfactant micelles. Colloids Surf. A.122 (1997) 97–101. 10.1016/S0927-7757(96)03825-3Suche in Google Scholar
32. Zhang, G., Shuang, S., Dong, C. and Pan, J.: Study on the interaction of methylene blue with cyclodextrin derivatives by absorption and fluorescence spectroscopy. Spectrochim. Acta. A.59 (2003) 2935–2941. 10.1016/S1386-1425(03)00123-9Suche in Google Scholar
33. Jain, B., Singh, A. K. and Sharma, V. K.: Degradation of naphthylazo anionic dye by Fenton and Fenton-like processes: a comparative study with Fast sulphon black-F. Des. Water Treat.62 (2017) 252–256. 10.5004/dwt.2017.1455Suche in Google Scholar
34. Padsala, S., Dharaiya, N. and Aswal, V. K.: Self-organization of mixtures of sodium oleate and imidazolium based surface active ionic liquids studied by tensiometry, rheology and neutron scattering. J. Mol. Liq.249 (2018) 573–582. 10.1016/j.molliq.2017.10.108Suche in Google Scholar
35. Mondal, S. and Das, B.: A study on the interaction of horse heart cytochrome c with some conventional and ionic liquid surfactants probed by ultraviolet-visible and fluorescence spectroscopic techniques. Spectrochim. Acta Part A.198 (2018) 278–282. PMid:29554518; 10.1016/j.saa.2018.03.026Suche in Google Scholar
36. Pramanik, D. and Mukherjee, D.: Molecular Interaction of Methylene Blue with Triton X-100 in Reverse Micellar Media. J. Colloid Interface Sci.157 (1993) 131–134. 10.1006/jcis.1993.1166Suche in Google Scholar
37. Moulik, S. P., Ghosh, S. and Das, A. R.: Interaction of acridine orange monohydrochloride dye with sodiumdodecylsulfate, (SDS) cetyltrimethylammoniumbromide (CTAB) and p-tert-octylphenoxypolyoxy ethanol (Triton X 100) surfactants. Colloid. Polym. Sci., 257 (1979) 645–655. 10.1007/BF01548834Suche in Google Scholar
38. Diaz-Garcia, M. E. and Sanz-Medel, A.: Dye-surfactant interactions: a review. Talanta.33 (1986) 255–264. 10.1016/0039-9140(86)80060-1Suche in Google Scholar
39. Naushad, Mu., Vasudevan, S., Sharma, G., Kumar, A. and ALOthman, Z. A.: Adsorption kinetics, isotherms, and thermodynamic studies for Hg2+ adsorption from aqueous medium using alizarin red-S-loaded amberlite IRA-400 resin. Des. Water Treat.57 (2015) 18551–18559. 10.1080/19443994.2015.1090914Suche in Google Scholar
40. Shah, S. S., Khan, M. S., Ullah, H. and Awan, M. A.: Solubilization of Amphiphilic Hemicyanine Dyes by a Cationic Surfactant, Cetyltrimethylammonium Bromide. J. Colloid Interface Sci.186 (1997) 382–386. PMid:9056367; 10.1006/jcis.1996.4649Suche in Google Scholar PubMed
41. Karukstis, K. K., Parelman, L. A. and Wong, W. K.: Spectroscopic Characterization of Azo Dye Aggregation on Dendrimer Surfaces. Langmuir.18 (2002) 10363–10371. 10.1021/la020558fSuche in Google Scholar
© 2020, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Hygiene
- The Antimicrobial Activity of Herbal Soaps Against Selected Human Pathogens
- Detergent Properties of Coconut Oil Derived N-Acyl Prolinate Surfactant and the In silico Studies on its Effectiveness Against SARS-CoV-2 (COVID-19)
- Novel Surfactants
- Cationic Bola Form Metallosurfactants Based on Isothiouronium, Synthesis and Anti-Microbial Activity
- Application
- Effect of Inorganic Salt on Foam Properties of Nanoparticle and Surfactant Systems
- Effects of Surfactant Compounding on the Wettability Characteristics of Zhaozhuang Coal: Experiment and Molecular Simulation
- A Comparative Spectral Study on the Interaction of Organic Dye Congo-Red with Selective Aqueous Micellar Media of CPC, Rhamnolipids and Saponin
- Synthesis
- Development of a Gypsum Foaming Agent Based on Alkyl Polyglucosides
- Synthesis and Properties of Amide Gemini Surfactants
- Study of the Synthesis of Branched Chain Alkyl Polyglucosides from Guerbet Alcohol in an Acid/Phase Transfer Catalyst System and Their Properties
- Short Communication/Physical Chemistry
- Study of Methionine and Cumene Hydroperoxide Reaction Kinetics in the Presence of Nonionic Surfactant
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Hygiene
- The Antimicrobial Activity of Herbal Soaps Against Selected Human Pathogens
- Detergent Properties of Coconut Oil Derived N-Acyl Prolinate Surfactant and the In silico Studies on its Effectiveness Against SARS-CoV-2 (COVID-19)
- Novel Surfactants
- Cationic Bola Form Metallosurfactants Based on Isothiouronium, Synthesis and Anti-Microbial Activity
- Application
- Effect of Inorganic Salt on Foam Properties of Nanoparticle and Surfactant Systems
- Effects of Surfactant Compounding on the Wettability Characteristics of Zhaozhuang Coal: Experiment and Molecular Simulation
- A Comparative Spectral Study on the Interaction of Organic Dye Congo-Red with Selective Aqueous Micellar Media of CPC, Rhamnolipids and Saponin
- Synthesis
- Development of a Gypsum Foaming Agent Based on Alkyl Polyglucosides
- Synthesis and Properties of Amide Gemini Surfactants
- Study of the Synthesis of Branched Chain Alkyl Polyglucosides from Guerbet Alcohol in an Acid/Phase Transfer Catalyst System and Their Properties
- Short Communication/Physical Chemistry
- Study of Methionine and Cumene Hydroperoxide Reaction Kinetics in the Presence of Nonionic Surfactant