Startseite Effects of Surfactant Compounding on the Wettability Characteristics of Zhaozhuang Coal: Experiment and Molecular Simulation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effects of Surfactant Compounding on the Wettability Characteristics of Zhaozhuang Coal: Experiment and Molecular Simulation

  • Junqing Meng , Junkai Xia , Hanxie Meng und Jiaxing Niu
Veröffentlicht/Copyright: 7. September 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

It is important to study the mechanism of wettability of Zhaozhuang coal with surfactant compoundings in order to prevent dust disaster in the process of coal seam mining. By means of molecular simulation, the amounts of water absorbed by different systems, which are composed of monomer surfactant molecules and Zhaozhuang coal molecules or compounding surfactant molecules and Zhaozhuang coal molecules, were compared in this paper. The simulation results show that the system composed of 0.2% sodium dodecyl benzene sulfonate (SDBS) and 0.3% alcohol polyoxyethylene ether (AEO3) had the maximum water absorption amount of 479, which is significantly better than that of other compounding methods and of each monosurfactant system. Analysis results show that the interference of non-ionic surfactant can greatly reduce the electrostatic repulsion between ionic surfactants and make the adsorption sites on the Zhaozhuang coal molecule more compact. The experimental results show that the decreasing percentage of the contact angle of this type of compounding solution on Zhaozhuang coal was 83.74%, which is the best of the six compounding methods. It has a high degree of consistency with the simulation results, and the molecular simulation method applied in this paper shows that it is convenient and accurate. This research plays a guiding role in dustproof work in Zhaozhuang coal mining.

Kurzfassung

Es ist wichtig, den Mechanismus der Benetzbarkeit von Zhaozhuang-Kohle mit Tensidmischungen zu untersuchen, um eine Staubkatastrophe im Prozess des Kohleflözabbaus zu verhindern. Mittels Molekularsimulation wurde in dieser Arbeit die Menge der Wasseraufnahme verschiedener Systeme, die sich aus monomeren Tensidmolekülen und Zhaozhuang-Kohlemolekülen oder aus Molekülen aus Tensidmischungen und Zhaozhuang-Kohlemolekülen zusammensetzten, verglichen. Die Simulationsergebnisse zeigen, dass das System, das sich aus 0,2% Natriumdodecylbenzensulfonat (SDBS) und 0,3% Alkoholpolyoxyethylenether (AEO3) zusammensetzte, die gemischte maximale Wasserabsorptionsmenge von 479 hatte, was signifikant besser ist als die der anderen Compounding-Methoden und jeder Mono-Tensidsysteme. Die Analysenergebnisse zeigen, dass die Interferenz von nichtionischem Tensid die elektrostatische Abstoßung zwischen ionischen Tensiden stark reduziert und die Adsorptionsstellen auf dem Zhaozhuang-Kohlemolekül kompakter machen kann. Die experimentellen Ergebnisse zeigen, dass die prozentuale Abnahme des Kontaktwinkels dieser Compoundierlösung auf Zhaozhuang-Kohle 83,74% betrug, was die beste der sechs Compoundierungsmethoden ist. Sie weist einen hohen Grad an Übereinstimmung mit den Simulationsergebnissen auf, und die hier verwendete Molekularsimulationsmethode zeigt, dass sie praktisch und genau ist. Diese Forschung spielt eine führende Rolle bei staubdichten Arbeiten im Kohlebergbau von Zhaozhuang.


Correspondence address, Prof. Dr. Junqing Meng, State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing), Beijing 100083, Beijing Key Laboratory for Precise Mining of Intergrown Energy and Resources, China University of Mining and Technology (Beijing), Beijing 100083, Tel.: 86-13671139683, E-Mail:

Meng Junqing received his PhD at China University of Mining and Technology (Beijing) in 2011. He served as an Associate Professor at China University of Mining and Technology (Beijing). Meng has long term experience with prevention and control of gas and dust disaster in coal mine and safety management of coal mine. Meng has authored 1 books and over 20 referred journal paper.

Xia Junkai served as a master student at China University of Mining and Technology (Beijing). Xia mainly researches in prevention and control of dust disaster in coal mine and safety management of coal mine.

Niu Jiaxing served as a master student at China University of Mining and Technology (Beijing). Niu mainly researches in prevention and control of dust disaster in coal mine and safety management of coal mine.

Meng Hanxie served as a master student at China University of Mining and Technology (Beijing). Meng mainly researches in prevention and control of dust disaster in coal mine and safety management of coal mine.


References

1. Ansart, R.; Letourneau, J. J.; Ryck, A. D. and Dodds, J. A.: Dust emission by powder handling: Influence of the hopper outlet on the dust plume. Powder Technology, 212 (2011) 418424. 10.1016/j.powtec.2011.06.022Suche in Google Scholar

2. Toraño, J.; Torno, S.; Menéndez, M. and Gent, M.: Auxiliary ventilation in mining roadways driven with roadheaders: Validated CFD modelling of dust behavior. Tunnelling & Underground Space Technology Incorporating Trenchless Technology Research, 26 (2011) 201210. 10.1016/j.tust.2010.07.005Suche in Google Scholar

3. Aydin, H.: Evaluation of the risk of coal workers pneumoconiosis (CWP): A case study for the Turkish hardcoal mining. Scientific research and essays, 5 (2010) 32893297.Suche in Google Scholar

4. Nie, B. S.; Li, X. C.; Yang, T.; Hu, W. X and Guo, J. H.: Distribution of PM2.5 dust during mining operation in coal workface. Journal of China Coal Society, 38 (2013) 3337. 10.13225/j.cnki.jccs.2013.01.020Suche in Google Scholar

5. Chang, H. H.; Zhang, H. C.; Jia, Z. G.; Li, X.; Gao, W. C. and Wei, W. L.: Wettability of coal pitch surface by aqueous solutions of cationic Gemini surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 494 (2016) 5964. 10.1016/j.colsufa.2016.01.022Suche in Google Scholar

6. Ding, C.; Nie, B. S.; Yang, H.; Dai, L. C.; Zhao, C. H.; Zhao, F. and LiH. L.: Experimental Research on Optimization and Coal Dust Suppression Performance of Magnetized Surfactant Solution. Procedia Engineering, 26 (2011) 13141321. 10.1016/j.proeng.2011.11.2306Suche in Google Scholar

7. Yang, J.; Wu, X. K.; Gao, J. G. and Li, G. P.: Surface Characteristics and Wetting Mechanism of Respirable Coal Dust. Mining Science and Technology, 20 (2010) 365371. 10.1016/S1674-5264(09)60209-XSuche in Google Scholar

8. Ivanova, N. A. and Starov, V. M.: Wetting of low free energy surfaces by aqueous surfactant solutions. Current Opinion in Colloid & Interface Science, 16 (2011) 285291. 10.1016/j.cocis.2011.06.008Suche in Google Scholar

9. Rocha, V. G.; Blanco, C.; Santamaría, R.; Diestre, E. I.; Menéndez, R. and Granda, M.: Pitch/coke wetting behavior. Fuel, 84 (2005) 15501556. 10.1016/j.fuel.2005.02.007Suche in Google Scholar

10. Simons, S. J. R.; Rossetti, D.; Pagliai, P.; Ward, R. and Fitzpatrick, S.: The relationship between surface properties and binder performance in granulation. Chemical Engineering Science, 60 (2005) 40554060. 10.1016/j.ces.2005.02.034Suche in Google Scholar

11. Wang, Y.; Liu, X. C.; Bai, L. and Niu, J. P.: Influence of alkyl chain length of alpha olefin sulfonates on surface and interfacial properties. Journal of Dispersion Science and Technology, (2017) 16. 10.1080/01932691.2017.1281144Suche in Google Scholar

12. Brumaru, C. and Geng, M. L.: Interaction of Surfactants with Hydrophobic Surfaces in Nanopores. Langmuir, 26 (2010) 1909119099. PMid:21043464; 10.1021/la1031009Suche in Google Scholar

13. Liu, Y. T. and Liu, S. Y.: Wettability Modification of Lignite by Adsorption of Dodecyl Based Surfactants for Inhibition of Moisture Re-adsorption. Journal of Surfactants and Detergents, 20 (2017) 707716. 10.1007/s11743-017-1937-9Suche in Google Scholar

14. Xi, Z. L.; Feng, Z. Y. and Li, A.: Synergistic coal dust control using aqueous solutions of thermoplastic powder and anionic surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 520 (2017) 864871. 10.1016/j.colsurfa.2017.02.072Suche in Google Scholar

15. Medeiros, M. A.; Leite, C. M. M. and Lago, R. M.: Use of glycerol by-product of biodiesel to produce an efficient dust suppressant. Chemical Engineering Journal, 180 (2012) 364369. 10.1016/j.cej.2011.11.056Suche in Google Scholar

16. Schwendeman, J. L.; Sun, S.; Salyer, I. O. and Wurstner, A. L.: Polymer-augmented aqueous foams for suppression of respirable coal dust. Annals of the New York Academy of Sciences, 200 (1972) 765783. PMid:4513344; 10.1111/j.1749-6632.1972.tb40237.xSuche in Google Scholar

17. Xu, C. H.; Wang, D. M.; Wang, H. T.; Ma, L. Y.; Zhu, X. L.; Zhu, Y. F.; Zhang, Y. and Liu, F. M.: Experimental investigation of coal dust wetting ability of anionic surfactants with different structures. Process Safety and Environmental Protection, 2018. 10.1016/j.psep.2018.10.010Suche in Google Scholar

18. Singh, B. P.: The influence of surface phenomena on the dewatering of fine clean coal. Filtration & Separation, 34 (1997) 159163. 10.1016/s.0015-1882(97)84807-0Suche in Google Scholar

19. Wang, X. N.; Yuan, S. J.; Li, X. and Jiang, B. Y.: Synergistic effect of surfactant compounding on improving dust suppression in a coal mine in Erdos, China. Powder Technology, 344 (2019) 561569. 10.1016/j.powtec.2018.12.061Suche in Google Scholar

20. Stoebe, T.; Lin, Z. X.; Hill, R. M.; Ward, M. D. and Davis, H. T.: Enhanced Spreading of Aqueous Films Containing Ethoxylated Alcohol Surfactants on Solid Substrates. Langmuir, 13 (1997) 72707275. 10.1021/la970702aSuche in Google Scholar

21. Tang, H. T.; Zhao, L. H.; Sun, W.; Hu, Y. H. and Han, H. S.: Surface characteristics and wettability enhancement of respirable sintering dust by nonionic surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 509 (2016) 323333. 10.1016/j.colsurfa.2016.09.041Suche in Google Scholar

22. Crawford, R. J. and Mainwaring, D. E.: Influence of surfactant adsorption on the surface characterization of Australian coals. Fuel, 80 (2001) 313320. 10.1016/S0016-2361(00)00110-1Suche in Google Scholar

23. Lyu, X. J.; You, X. F.; He, M.; Zhang, W.; Wei, H. B.; Li, L. and He, Q. Q.: Adsorption and molecular dynamics simulations of nonionic surfactant on the low rank coal surface. Fuel, 211 (2018) 529534. 10.1016/j.fuel.2017.09.091Suche in Google Scholar

24. Zhang, L.; Li, B.; Xia, Y. C. and Liu, S. Y.: Wettability modification of Wender lignite by adsorption of dodecyl poly ethoxylated surfactants with different degree of ethoxylation: A molecular dynamics simulation study. Journal of Molecular Graphics and Modelling, 76 (2017). PMid:28715753; 10.1016/j.jmgm.2017.06.028Suche in Google Scholar

25. Hu, Y. F.; Lv, W. J.; Zhao, S. L.; Shang, Y. Z.; Wang, H. L. and Liu, H. L.: Effect of surfactant SDS on DMSO transport across water/hexane interface by molecular dynamics simulation. Chemical Engineering Science, 134 (2015) 813822. 2015.05.068. 10.1016/j.cesSuche in Google Scholar

26. Singh, B. P.: The role of surfactant adsorption in the improved dewatering of fine coal. Fuel, 78 (1999) 501506. 10.1016/S0016-2361(98)00169-0Suche in Google Scholar

27. Gomes, A. C. R.; Cafer, L. D. F.; Homem-De-Mello, P.; Coutinho-Neto, M. D. and Gaubeur, I.: The interaction of an azo compound with a surfactant and ion pair adsorption to solid phases. Journal of Colloid and Interface Science, 367 (2012) 370377. PMid:22079519; 10.1016/j.jcis.2011.10.032Suche in Google Scholar PubMed

28. Dutta, A. and Dutta, R. K.: Protonation of acridine orange in dye-surfactant ion pair micelles. Journal of Molecular Liquids, 178 (2013) 2530. 10.1016/j.molliq.2012.09.025Suche in Google Scholar

29. Wang, C.; Cao, X. L.; Guo, L. L.; Xu, Z. C.; Zhang, L.; Gong, Q. T.; Zhang, L. and Zhao, S.: Effect of molecular structure of catanionic surfactant mixtures on their interfacial properties. Colloids & Surfaces A: Phys. Eng. Asp.509 (2016) 601612. 10.1016/j.colsurfa.2016.09.069Suche in Google Scholar

30. Zhu, P.; Zhu, Y.; Xu, Z. C.; Zhang, L.; Zhang, L. and Zhao, S.: Effect of Polymer on Dynamic Interfacial Tensions of Anionic-nonionic Surfactant Solutions. Journal of Dispersion Science and Technology, 37 (2016) 820829. 2015.1065502. 10.1080/01932691Suche in Google Scholar

31. Liu, X. C.; Zhao, Y. X.; Li, Q. X.; Jiao, T. L. and Niu, J. P.: Adsorption behavior, spreading and thermal stability of anionic-nonionic surfactants with different ionic headgroup. Journal of Molecular Liquids, 219 (2016) 11001106. 10.1016/j.molliq.2016.04.030Suche in Google Scholar

32. Kong, X. P. and Wang, J.: Copper (II) adsorption on the kaolinite (001) surface: Insights from first-principles calculations and molecular dynamics simulations. Applied Surface Science, 389 (2016). 10.1016/j.apsusc.2016.07.112Suche in Google Scholar

33. Zhang, Z. Q.; Wang, C. L. and Yan, K. F.: Adsorption of collectors on model surface of Wiser bituminous coal: A molecular dynamics simulation study. Minerals Engineering, 79 (2015) 3139. 10.1016/j.mineng.2015.05.009Suche in Google Scholar

34. Jiang, R. J.; Luo, J. H.; Bai, R. B.; Jiang, B. and Zhou, G.: Molecular Dynamics Simulation on Behavior of Common Surfactants at the Oil/Water Interface in Complex Systems. Chemical Journal of Chinese Universities-Chinese, 38 (2017) 18041812. 10.7503/cjcu20170242Suche in Google Scholar

35. Meng, J. Q.; Zhong, R. Q.; Li, S. C.; Yin, F. F. and Nie, B. S.: Molecular Model Construction and Study on Gas Adsorption of Zhaozhuang Coal. Energy & Fuels, 32 (2018) 97279737. 10.1021/acs.energyfuels.8b01940Suche in Google Scholar

36. Meng, J. Q.; Yin, F. F.; Li, S. C.; Zhong, R. Q.; Sheng, Z. Y. and Nie, B. S.: Effect of different concentrations of surfactant on the wettability of coal by molecular dynamics simulation. International Journal of Mining Science and Technology, 29 (2019) 577584. 10.1016/j.ijmst.2019.06.010Suche in Google Scholar

37. Drelich, J.; Zahn, R.; Miller, J. D. and Borchardt, J. K.: Contact Angle Relaxation for Ethoxylated Alcohol Solutions on Hydrophobic Surfaces. Contact Angle, Wettability and Adhesion – Vol. II. (2002) 253264.Suche in Google Scholar

38. Svitova, T.; Hill, R. M. and Radke, C. J.: Adsorption layer structures and spreading behavior of aqueous non-ionic surfactants on graphite. Colloids and Surfaces, 183 (2001) 607620. 10.1016/S0927-7757(01)00517-9Suche in Google Scholar

39. Yang, J. S.: Principle and Application of Surfactants. Nanjing: Southeast University Press, (2017) 151.Suche in Google Scholar

Received: 2019-11-01
Accepted: 2020-05-25
Published Online: 2020-09-07
Published in Print: 2020-09-16

© 2020, Carl Hanser Publisher, Munich

Heruntergeladen am 29.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/113.110704/html
Button zum nach oben scrollen