The Antimicrobial Activity of Herbal Soaps Against Selected Human Pathogens
-
Hayrunnisa Nadaroglu
and Alper Baran
Abstract
Antioxidant substances are used not only in food and beverages, but also in soap formulations which are known to be effective in skin cleansing, and are also used as ingredients in the detergent and cosmetics market. The aim of this study was to determine the bactericidal effects of plain and antibacterial soaps containing Punica granatum flower (PGF), Carrot seed (CS, Daucus carota), Lavender (LV, Lavandula officinalis L.) extracts which are known for their high antioxidant activity. Antioxidant properties were determined by using the cupric ion reducing antioxidant capacity (CUPRAC) and Ferric reducing antioxidant power (FRAP) for all soap samples. The effectiveness of soaps which are prepared using PGF, CS and LV extracts on gram positive and gram negative bacteria was investigated. From the findings obtained, all plant extracted soaps had antibacterial activity and it was determined that soap containing carrot extract caused a significant decrease in bacterial levels compared to other soaps. As a result, it has been concluded that the use of antimicrobial and antioxidant compounds as soap formulation components is extremely important for increasing the effectiveness of soap against bacteria.
Kurzfassung
Antioxidative Substanzen werden nicht nur in Lebensmitteln und Getränken verwendet, sondern auch in Seifenformulierungen, die bekanntermaßen bei der Hautreinigung wirksam sind, und auch als Inhaltsstoffe auf dem Waschmittel- und Kosmetikmarkt eingesetzt. Das Ziel dieser Studie war es, die bakterizide Wirkung von einfachen und antibakteriellen Seifen zu bestimmen, die Extrakte aus Punica granatum-Blüten (PGF), Karottensamen (CS, Daucus carota), Lavendel (LV, Lavandula officinalis L.) enthalten und für ihre hohe antioxidative Aktivität bekannt sind. Die antioxidativen Eigenschaften aller Seifenproben wurden mittels der Kupfer(II)-Ionen reduzierenden antioxidativen Kapazität (CUPRAC) und der Eisen(III)-reduzierenden antioxidativen Kraft (FRAP) bestimmt. Die Wirksamkeit von Seifen, die mit PGF-, CS- und LV-Extrakten hergestellt wurden, auf grampositive und gramnegative Bakterien wurde untersucht. Aus den gewonnenen Erkenntnissen ging hervor, dass alle pflanzlich extrahierten Seifen eine antibakterielle Wirkung hatten. Es wurde ebenfalls festgestellt, dass seifenhaltiger Karottenextrakt im Vergleich zu anderen Seifen einen signifikanten Rückgang der Bakterienkonzentration verursachte. Daraus wurde der Schluss gezogen, dass die Verwendung von antimikrobiellen und antioxidativen Verbindungen als Bestandteile der Seifenformulierung äußerst wichtig ist, um die Wirksamkeit der Seife gegen Bakterien zu erhöhen.
References
1. Bajpai, D. and Tyagi, V. K.: Laundry detergents: an overview. J. Oleo Sci.56 (2007) 327–340. PMid:17898499; 10.5650/jos.56.327Search in Google Scholar
2. Shahidzadeh, N., Bonn, D. and MeunierJ.: A new mechanism of spontaneous emulsification: Relation to surfac- tant properties. Europhys. Lett.40 (1997) 459–464. 10.1209/epl/i1997-00488-0Search in Google Scholar
3. Broze Handbook of Detergents Part A: Properties. Surfactant Sci. Ser. Marcel Dekker82 (1999) 597–617. 10.1201/b10985Search in Google Scholar
4. Friedman, M. W. R.: Chemistry of soaps and detergents: various types of commercial products and their ingredients. Clin. Dermatology14 (1996) 7–13. 10.1016/0738-081X(95)00102-LSearch in Google Scholar
5. Kim, S. A. and Rhee, M. S.: Microbicidal effects of plain soap vs triclocarban-based antibacterial soap. J. Hosp. Infect.94 (2016) 276–280. PMid:27585555; 10.1016/j.jhin.2016.07.010Search in Google Scholar PubMed
6. Fluit, A. C., Schmitz, F. J. and Verhoef, J.: Frequency and isolation of pathogens from Blood stream, nosocomial pneumonia, skin and soft tissue, and urinary tract infections occurring in European patients. Eur. J. Clin. Microbiol.20 (2001) 188–191. PMid:11347669; 10.1007/s100960100455Search in Google Scholar PubMed
7. Higaki, S., Kitagawa, T., Kagoura, M., Morohashi, M. and Yamagishi, T.: Predominant Staphylococcus aureus isolated from various skin diseases. J. Int. Med. Res.28 (2000) 87–190. PMid:11014326; 10.1177/147323000002800404Search in Google Scholar PubMed
8. Richards, M. J., Edwards, J. R., Culver, D. H. and GaynesR.: Nosocomial infections in medical intensive care units in the United States. National Nosocomial Infections Surveillance System. Crit. Care. Med.27 (1999) 887–892. PMid:10362409; 10.1097/00003246-199905000-00020Search in Google Scholar PubMed
9. Hand-washing Liason Group Hand washing. A modest measure – with big effects. Br. Med. J. (1999) 318–686. PMid:10073995; 10.1136/bmj.318.7185.686Search in Google Scholar PubMed PubMed Central
10. Boyce, J. M. and Pittet, D.: Guideline for hand hygiene in health-care settings: recommendations of the Healthcare Infection Control Practices Advisory Committee and the HICPAC/SHEA/APIC/IDSA Hand Hygiene Task Force. Am. J. Infect. Control30 (2002) S1eS46. PMid:12515399; 10.1086/503164Search in Google Scholar PubMed
11. Pierce, A.: Soap Making Recipes: Soap Making For Beginners, United States of America, Publiser Mihails Konoplovs (2013) 1–34.Search in Google Scholar
12. Apak, R., Güçlü, K., Özyürek, M. and Karademir, S. E.: Novel Total Antioxidant Capacity Index for Dietary Polyphenols and Vitamins C and E, Using Their Cupric Ion Reducing Capability in the Presence of Neocuproine: CUPRAC Method. J. Agric. Food Chem.52 (2004) 7970–7981. PMid:15612784; 10.1021/jf048741xSearch in Google Scholar PubMed
13. Nadaroglu, H., Demir, Y. and Demir, N.: Antioxidant and radical scavenging properties of Iris germanica. Pharm. Chem. J.41 (2007) 409–415. 10.1007/s11094-007-0089-zSearch in Google Scholar
14. Nadaroglu, H., Demir, N. and Demir, Y.: Antioxidant and radical scavenging activities of capsules of caper (Capparis spinosa). Asian J. Chem.21 (2009) 5123–5134.Search in Google Scholar
15. Oyaizu, M.: Studies on products of browning reaction: antioxidative activity of products of browning reaction. Japanese J. Nutr. Diet.44 (1986) 307–315. 10.5264/eiyogakuzashi.44.307Search in Google Scholar
16. Celik, H., Kucukoglu, K., Nadaroglu, H. and SenolM.: Evaluation of antioxidant, antiradicalic and antimicrobial activities of kernel date (Fructus dactylus). J. Pure Appl. Microbiol.8 (2014) 993–1002.Search in Google Scholar
17. Nadaroglu, H., Alayli, A., Ceker, S., Ogutcu, H. and AgarG.: Investigation of antimicrobial and genotoxic effects of Fe2O3, NiO and CoO NPs synthesized by green synthesis. J. Nanoanalysis (2020) In press. 10.22034/JNA.2020.1894035.1190Search in Google Scholar
18. Monteleone, E. and Langstaff, S.: Olive Oil Sensory Science: An Overview, Wiley-Blackwell, 1st Edition, Kindle Edition, New Delhi, India (2014) 1–359. 10.1002/9781118332511Search in Google Scholar
19. Kaur, G., JabbarZ., Athar, M. and Alam, M. S.: Punica granatum (pomegranate) flower extract possesses potent antioxidant activity and abrogates Fe-NTA induced hepatotoxicity in mice. Food Chem. Toxicol.44 (2006) 984–993. PMid:16426722; 10.1016/j.fct.2005.12.001Search in Google Scholar PubMed
20. Al Yahya, M. A.: Preliminary phytochemical and pharmachological and on the rind of Pomegranate (Punica granatume L.). Pakistan J. Biol. Sci.8 (2005) 479–481. 10.3923/pjbs.2005.479.481Search in Google Scholar
21. Wang, R., Wang, W., WangL., et al.: Constituents of the flowers of Punica granatum. Fitoterapia77 (2006) 534–537. PMid:16887296; 10.1016/j.fitote.2006.06.011Search in Google Scholar PubMed
22. Simon, J. E., Chadwick, A. F. and Craker, L. E.: An indexed bibliography. 1971–1980. In: The Scientific Literature on Selected Herbs and Aromatic and Medicinal Plants of the Temperate Zone. Archon Books, Hamden, C.T. (1984) p 770.Search in Google Scholar
23. Barazandeh, M. M.: Essential Oil Composition of Lavandula latifolia Medik from Iran. J. Essent Oil Res.14 (2002) 103–104. 10.1080/10412905.2002.9699784Search in Google Scholar
24. Gonny, M., Bradesi, P. and Casanova, J.: Identification of the components of the essential oil from wild Corsican Daucus carota L. using 13C-NMR spectroscopy. Flavor Fragr. J.19 (2004) 424–433. 10.1002/ffj.1330Search in Google Scholar
25. Staniszewska, M. and Kula, J.: Composition of the essential oil from wild carrot umbels (Daucus carota) growing in Poland. J. Essent. Oil Resour.13 (2001) 439–441. 10.1080/10412905.2001.9699720Search in Google Scholar
26. Abdulrasheed A. , Aroke, U. O. and Sani, I. M.: Parametric studies of carrot seed oil extract for the production of medicated soap. Int. J. Recent Dev. Eng. Technol.4 (2015) 2347–6435.Search in Google Scholar
27. Dadar, M., Tiwari, R., Karthik, K., Chakraborty, S., Shahali, Y. and Dhama, K.: Candida albicans – Biology, molecular characterization, pathogenicity, and advances in diagnosis and control – An update. Microb Pathog117 (2018) 128–138. PMid:29454824; 10.1016/j.micpath.2018.02.028Search in Google Scholar PubMed
28. Gulati, M. and Nobile, C. J.: Candida albicans biofilms: development, regulation, and molecular mechanisms. Microbes Infect.18 (2016) 310–321. PMid:26806384; 10.1016/j.micinf.2016.01.002Search in Google Scholar PubMed PubMed Central
29. Poupet, C., Saraoui, T., Veisseire, P., Bonnet, M., Dausset, C., Gachinat, M., Camarès, O., Chassard, C., Nivoliez, A. and Bornes, S.: Lactobacillus rhamnosus Lcr35 as an effective treatment for preventing Candida albicans infection in the invertebrate model Caenorhabditis elegans: First mechanistic insights. PLoS One (2019) 14. PMid:31693670; 10.1371/journal.pone.0216184Search in Google Scholar PubMed PubMed Central
30. Bassetti, M., Righi, E., Carnelutti, A., et al: Multidrug-resistant Klebsiella pneumoniae: challenges for treatment, prevention and infection control. Expert Rev. Anti Infect. Ther.16 (2018) 749–761. PMid:30207815; 10.1080/14787210.2018.1522249Search in Google Scholar PubMed
31. Sasahara, T., Hayashi, S., Morisawa, Y. et al.: Bacillus cereus bacteremia outbreak due to contaminated hospital linens. Eur J Clin Microbiol Infect Dis30 (2011) 219–226. PMid:20938704; 10.1007/s10096-010-1072-2Search in Google Scholar PubMed
32. Weber, D. J., Sickbert-Bennett, E., Gergen, M. F. and Rutala, W. A.: Efficacy of selected hand hygiene agents used to remove Bacillus atrophaeus (a surrogate of Bacillus anthracis) from contaminated hands. Jama289 (2003) 1274–1277, 10.1001/jama.289.10.1274. PMid:12633189; 10.1001/jama.289.10.1274Search in Google Scholar PubMed
33. Ercumen, A., Pickering, A. J., Kwong, L. H., et al: Animal Feces Contribute to Domestic Fecal Contamination: Evidence from E. coli Measured in Water, Hands, Food, Flies, and Soil in Bangladesh. Environ. Sci. Technol.51 (2017) 8725–8734. PMid:28686435; 10.1021/acs.est.7b01710Search in Google Scholar PubMed PubMed Central
34. Matsumoto, S., Suenaga, H., Naito, K., Sawazaki, M., Hiramatsu, T. and Agata, N.: Management of suspected nosocomial infection: an audit of 19 hospitalized patients with septicemia caused by Bacillus species. Jpn. J. Infect. Dis.53 (2000) 196–202.Search in Google Scholar
35. Kampf, G. and Kramer, A.: Epidemiologic background of hand hygiene and evaluation of the most ımportant agents for scrubs and rubs. Clin. Microbiol. Rev.17 (2004) 863–893. PMid:15489352; 10.1128/CMR.17.4.863-893.2004Search in Google Scholar PubMed PubMed Central
36. Okada, J., Yamamizu, Y. and Fukai, K.: Effectiveness of hand hygiene depends on the patient's health condition and care environment. Japan J. Nurs. Sci.13 (2016) 413–423. PMid:26877206; 10.1111/jjns.12122Search in Google Scholar PubMed
37. Carvalho, I., Silva, N., Carrola, J., Silva, V., Currie, C., Igrejas, G. and Poeta, P.: Antibiotic Resistance. In: Antibiotic Drug Resistance. Wiley, (2019) 239–259, 10.1002/9781119282549.ch11. 10.1002/9781119282549.ch11Search in Google Scholar
38. Abaza, A. F., Amine, A. E. and Hazzah, W. A.: Comparative study on efficacy of different alcohol hand rubs and routine hand wash in a health-care setting, Alexandria. J. Egypt Public Health. Assoc.85 (2010) 273–283.Search in Google Scholar
39. Fazeli, H., Akbari, R., Moghim, S., Narimani, T., Arabestani, M. R. and Ghoddousi, A. R.: Pseudomonas aeruginosa infections in patients, hospital means, and personnel's specimens. J. Res. Med. Sci.17 (2012) 332–337.Search in Google Scholar
40. Lanotte, P., Watt, S., Mereghetti, L., Dartiguelongue, N., Rastegar-Lari, A., Goudeau, A. and Quentin, R.: Genetic features of Pseudomonas aeruginosa isolates from cystic fibrosis patients compared with those of isolates from other origins. J. Med. Microbiol.53 (2004) 73–81. PMid:14663109; 10.1099/jmm.0.05324-0Search in Google Scholar PubMed
41. Halden, R. U.: On the need and speed of regulating triclosan and triclocarban in the United States. Environ. Sciogy.48 (2014) 3603e3611. PMid:24588513; 10.1021/es500495pSearch in Google Scholar PubMed PubMed Central
42. Federal Drug Administration (FDA). FDA issues final rule on safety and effectiveness of antibacterial soaps (September 02, 2016). https://www.fda.gov/news-events/press-announcements/fda-issues-final-rule-safety-and-effectiveness-antibacterial-soaps. 10.1016/j.fos.2016.10.021Search in Google Scholar
© 2020, Carl Hanser Publisher, Munich
Articles in the same Issue
- Contents/Inhalt
- Contents
- Hygiene
- The Antimicrobial Activity of Herbal Soaps Against Selected Human Pathogens
- Detergent Properties of Coconut Oil Derived N-Acyl Prolinate Surfactant and the In silico Studies on its Effectiveness Against SARS-CoV-2 (COVID-19)
- Novel Surfactants
- Cationic Bola Form Metallosurfactants Based on Isothiouronium, Synthesis and Anti-Microbial Activity
- Application
- Effect of Inorganic Salt on Foam Properties of Nanoparticle and Surfactant Systems
- Effects of Surfactant Compounding on the Wettability Characteristics of Zhaozhuang Coal: Experiment and Molecular Simulation
- A Comparative Spectral Study on the Interaction of Organic Dye Congo-Red with Selective Aqueous Micellar Media of CPC, Rhamnolipids and Saponin
- Synthesis
- Development of a Gypsum Foaming Agent Based on Alkyl Polyglucosides
- Synthesis and Properties of Amide Gemini Surfactants
- Study of the Synthesis of Branched Chain Alkyl Polyglucosides from Guerbet Alcohol in an Acid/Phase Transfer Catalyst System and Their Properties
- Short Communication/Physical Chemistry
- Study of Methionine and Cumene Hydroperoxide Reaction Kinetics in the Presence of Nonionic Surfactant
Articles in the same Issue
- Contents/Inhalt
- Contents
- Hygiene
- The Antimicrobial Activity of Herbal Soaps Against Selected Human Pathogens
- Detergent Properties of Coconut Oil Derived N-Acyl Prolinate Surfactant and the In silico Studies on its Effectiveness Against SARS-CoV-2 (COVID-19)
- Novel Surfactants
- Cationic Bola Form Metallosurfactants Based on Isothiouronium, Synthesis and Anti-Microbial Activity
- Application
- Effect of Inorganic Salt on Foam Properties of Nanoparticle and Surfactant Systems
- Effects of Surfactant Compounding on the Wettability Characteristics of Zhaozhuang Coal: Experiment and Molecular Simulation
- A Comparative Spectral Study on the Interaction of Organic Dye Congo-Red with Selective Aqueous Micellar Media of CPC, Rhamnolipids and Saponin
- Synthesis
- Development of a Gypsum Foaming Agent Based on Alkyl Polyglucosides
- Synthesis and Properties of Amide Gemini Surfactants
- Study of the Synthesis of Branched Chain Alkyl Polyglucosides from Guerbet Alcohol in an Acid/Phase Transfer Catalyst System and Their Properties
- Short Communication/Physical Chemistry
- Study of Methionine and Cumene Hydroperoxide Reaction Kinetics in the Presence of Nonionic Surfactant