Preparation and Release Properties of Cationic Flavor Microcapsules with Tetradecyl Allyldimethyl Ammonium Bromide (TADAB) as Main Shell Material
-
Xianghui Zhao
Abstract
Cationic flavor microcapsules were synthesized with tetradecyl allyldimethyl ammonium bromide (TADAB) as main shell material by emulsion polymerization. Methyl methacrylate (MMA), polyoxyethylene alkyl ether, and pentaerythritol tetraacrylate (PETRA) were applied as co-monomer, emulsifier and crosslinking agent, respectively. The polymerization reaction was proved by Fourier transform infrared spectroscopy (FTIR). The images of scanning electron microscope (SEM) illustrated that the flavor microcapsules were spherical under the optimum preparation condition. The particle size distribution of the flavor microcapsules was between 2 μm–10 μm and the zeta potential was +39.2 mV at pH 4.48. The thermogravimetric analyses indicated that the volatility of the flavor was effectively suppressed and the thermal stability was improved as the flavor was encapsulated in the microcapsules. When the flavor microcapsules were dispersed in an aqueous surfactant solution containing 20 w% polyoxyethylene alkyl ether, approximately 18% of the flavor was released within the first 30 h, but no flavor was released after 30 h. In an open beaker, the flavor retention of the microcapsules was 56.57% compared to 16.76% of flavor microcapsules broken in advance with mortar. The flavor microcapsules are very well suited for use in detergents or soaps, as they suppress the volatilization of the flavor in case of mechanical breakage and release the flavor well.
Kurzfassung
Kationische Aromamikrokapseln wurden mit Tetradecylallyldimethylammoniumbromid (TADAB) als Material für die Außenschale durch Emulsionspolymerisation synthetisiert. Methylmethacrylat (MMA), Polyoxyethylenalkylether und Pentaerythritoltetraacrylat (PETRA) wurden als Co-Monomer, Emulgator bzw. Vernetzungsmittel eingesetzt. Die Polymerisationsreaktion wurde durch Fourier-Transformations-Infrarot-Spektroskopie (FTIR) nachgewiesen. Die Bilder des Rasterelektronenmikroskops (REM) zeigten, dass die Aromamikrokapseln unter optimalen Präparationsbedingungen kugelförmig waren. Die Partikelgrößenverteilung der Aromamikrokapseln lag zwischen 2 μm–10 μm. Das Zetapotential betrug +39,2 mV bei pH 4,48. Die thermogravimetrischen Analysen zeigten, dass die Flüchtigkeit des in den Mikrokapseln eingekapselten Aromas wirksam unterdrückt und die thermische Stabilität verbessert wurde. Als die Aromamikrokapseln in einer wässrigen Tensidlösung mit 20 Gew.-% Polyoxyethylenalkylether dispergiert wurden, wurden innerhalb der ersten 30 Stunden ca. 18% des Aromas freigesetzt, nach 30 Stunden wurde jedoch kein Aroma mehr freigesetzt. In einem offenen Becherglas betrug die Aromaretention der Mikrokapseln 56,57%, verglichen mit 16,76% der Aromamikrokapseln, die vorher mit einem Mörser aufgebrochen wurden. Die Aromamikrokapseln sind sehr gut für die Verwendung in Waschmitteln oder Seifen geeignet, da sie bei mechanischem Bruch die Verflüchtigung des Aromas unterdrücken und das Aroma gut freisetzen.
References
1. Mohaddes, F., Islam, S., Shanks, R., Fergusson, M., Wang, L. and Padhye, R.: Modification and evaluation of thermal properties of melamine-formaldehyde/n-eicosane microcapsules for thermo-regulation applications, Applied Thermal Engineering.71, 1 (2014) 11–15. 10.1016/j.applthermaleng.2014.06.016Suche in Google Scholar
2. Khakzad, F., Alinejad, Z., Shirin-Abadi, A. R., Ghasemi, M. and Mahdavian, A. R.: Optimization of parameters in preparation of PCM microcapsules based on melamine formaldehyde through dispersion polymerization, Colloid and Polymer Science.292, 2 (2014) 355–368. 10.1007/s00396-013-3076-9Suche in Google Scholar
3. Hosseini, S. F., Zandi, M., Rezaei, M. and Farahmandghavi, F.: Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: preparation, characterization and in vitro release study, Carbohydrate Polymers.95, 1 (2013) 50–56. 23618238 10.1016/j.carbpol.2013.02.031Suche in Google Scholar PubMed
4. Zhu, G. Y., Xiao, Z. B., Zhou, R. J. and Yi, F. P.: Fragrance and flavor microencapsulation technology, Advanced Materials Research.535 (2012) 440–445. 10.4028/www.scientific.net/amr.535-537.440Suche in Google Scholar
5. Li, W., Wu, G., Chen, H. and Wang, M.: Preparation and characterization of gelatin/SDS/NaCMC microcapsules with compact wall structure by complex coacervation, Colloids and Surfaces A.333, 1–3 (2009) 133–137. 10.1016/j.colsurfa.2008.09.046Suche in Google Scholar
6. Liu, C. H., Zhou, H. J., Liu, J. Y., Li, X. T., Fang, H. and Yang, Z. H.: Preparation of antibacterial citronella oil microcapsules and their application in cotton fabrics, Advanced Materials Research.627 (2013) 271–274. 10.4028/www.scientific.net/AMR.627.271Suche in Google Scholar
7. Lv, Y., Zhang, X., Zhang, H., Abbas, S. and Karangwa, E.: The study of pH-dependent complexation between gelatin and gum arabic by morphology evolution and conformational transition, Food Hydrocolloids.30, 1 (2013) 323–332. 10.1016/j.foodhyd.2012.06.007Suche in Google Scholar
8. Humblet-Hua, K. N. P., Linden, E. and Sagis, L. M. C.: Microcapsules with protein fibril reinforced shells: Effect of fibril properties on mechanical strength of the shell, Journal of Agricultural and Food Chemistry.60, 37 (2012) 9502–9511. 22906204 10.1021/jf3024529Suche in Google Scholar PubMed
9. Zhang, Y., Song, J. and Chen, H. L.: Preparation of polyacrylate/paraffin microcapsules and its application in prolonged release of fragrance, Journal of Applied Polymer Science. 133, 42 (2016). 10.1002/app.44136Suche in Google Scholar
10. Akamatsu, K., Chen, W., Suzuki, Y., Ito, T., Nakao, A. and Sugawara, T.: Preparation of monodisperse chitosan microcapsules with hollow structures using the SPG membrane emulsification technique, Langmuir.26, 18 (2010) 14854–14860. 20718480 10.1021/la101967uSuche in Google Scholar PubMed
11. Ghayempour, S. and Mortazavi, S. M.: Preparation and investigation of sodium alginate nanocapsules by different microemulsification devices, Journal of Applied Polymer Science. 132, 17 (2015). 10.1002/app.41904Suche in Google Scholar
12. Herculano, E. D., De-Paula, H. C. B., De-Figueiredo, E. A. T., Dias, F. G. B. and Pereira, V. D. A.: Physicochemical and antimicrobial properties of nanoencapsulated Eucalyptus staigeriana essential oil, LWT – Food Science and Technology. 61, 2 (2015) 484–491. 10.1016/j.lwt.2014.12.001Suche in Google Scholar
13. Lobato, K. B. S., Paese, K., Forgearini, J. C., Guterres, S. S., Jablonski, A. and Rios, A. D. O.: Characterisation and stability evaluation of bixin nanocapsules, Food Chemistry.141, 4 (2013) 3906–3912. 23993564 10.1016/j.foodchem.2013.04.135Suche in Google Scholar PubMed
14. Lim, H. K., Tan, C. P., Bakar, J. and Ng, S. P.: Effects of different wall materials on the physicochemical properties and oxidative stability of spray-dried microencapsulated red-fleshed pitaya (Hylocereus polyrhizus) seed oil, Food and Bioprocess Technology.5, 4 (2012) 1220–1227. 10.1007/s11947-011-0555-1Suche in Google Scholar
15. Aungsupravate, O., Kangwansupamonkon, W., Chavasiri, W. and Kiatkamjornwong, S.: Synthesis and properties of solvent absorptive methyl methacrylate-divinylbenzene copolymer beads, Polymer Engineering & Science.47, 4 (2007) 447–459. 10.1002/pen.20688Suche in Google Scholar
16. Kulkarni, R. V., Mangond, B. S., Mutalik, S. and Sa, B.: Interpenetrating polymer network microcapsules of gellan gum and egg albumin entrapped with diltiazem–resin complex for controlled release application, Carbohydrate Polymers.83, 2 (2011) 1001–1007. 10.1016/j.carbpol.2010.09.017Suche in Google Scholar
17. Yang, G. X., Song, X. Q., Ye, L., Liu, Q. K., Duan, Y. P. and Cao, L. D.: Microcapsules of PMMA/HD thermal energy storage prepared by emulsion polymerization, Journal of Silk.52, 4 (2015) 9–13. 10.3969/j.issn.1001-7003.2015.04.003Suche in Google Scholar
18. Dong, Z. J., Ma, Y. and Hayat, K.: Morphology and release profile of microcapsules encapsulating peppermint oil by complex coacervation, Journal of Food Engineering.104, 3 (2011) 455–460. 10.1016/j.jfoodeng.2011.01.011Suche in Google Scholar
19. Yeh, K. W., Chang, C. P. and Yamamoto, T. K.: Release model of alginate microcapsules containing volatile tea-tree oil, Colloids and Surfaces A: Physicochemical and Engineering Aspects.308, 1–3 (2011) 152–155. 10.1016/j.colsurfa.2011.02.043Suche in Google Scholar
20. Song, X. Q. and Duan, Y. P.: Preparation and Characterization of Totally Encapsulated Microcapsules of Jasmine Fragrance, Chinese Journal of Materials Research.31, 1 (2017) 27–31. 10.11901/1005.3093.2015.484Suche in Google Scholar
21. Rodrigues, S. N., Martins, I. M. and Fernandes, I. P.: Scentfashion®: Microencapsulated perfumes for textile application, Chemical Engineering Journal.149, 1–3 (2009) 463–472. 10.1016/j.cej.2009.02.021Suche in Google Scholar
22. Park, S. J., Shin, Y. S. and Lee, J. R.: Preparation and characterization of microcapsules containing lemon oil, Journal of Colloid and Interface Science.241, 2 (2001) 502–508. 10.1006/jcis.2001.7727Suche in Google Scholar
23. Song, J. and Chen, H. L.: Preparation of flavor microcapsules with sodium alginate and tetradecylallyldimethylammonium bromide (TADAB) and its potential applications in cosmetics, Flavor and Fragrance Journal.33, 2 (2018) 160–165. 10.1002/ffj.3411Suche in Google Scholar
24. Gu, M. X., Wen, Y., Wang, H. Q. and Chen, H. L.: Synthesis and properties of quaternary ammonium polymerizable surfactants, Textile Auxiliaries, 32, 10 (2015) 26–30./j.issn.1004-0439.2015.10.006. 10.3969Suche in Google Scholar
© 2020, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Novel Surfactants
- The Effects of the Glucose-Based Cationic-Nonionic Surfactant with Ag-SiO2 Nanocomposites on Interfacial and Foam Ability Properties
- Synthesis and Properties of Alkyl Polyglycoside Polyoxypropylene Ethers
- Surface Properties and Adsorption Behavior of Alkyl Glycoside Tartarate
- Micellar Catalysis
- Trivalent Ruthenium and Iridium Salt: Excellent Homogeneous Catalysts for Cyclic Alcohol Oxidation in Micellar Media
- Application
- Preparation and Release Properties of Cationic Flavor Microcapsules with Tetradecyl Allyldimethyl Ammonium Bromide (TADAB) as Main Shell Material
- Synthesis, Characterization, Flocculation and Antistatic Properties of Poly(Methacryloyloxyethyl trimethyl Ammonium Chloride)
- Physical Chemistry
- Removal of Toxic Eosin Y Dye from Water Samples by Cloud Point Extraction using Triton X-114 as Nonionic Surfactant
- Synthesis
- Synthesis and Properties of Cationic Gemini Surfactants with Amide Groups
- Synthesis, Characterization, and Properties of Acyl Glycine, Alanine, Valine, and Leucine Derived from Vegetable Oils and Beef Tallow
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Novel Surfactants
- The Effects of the Glucose-Based Cationic-Nonionic Surfactant with Ag-SiO2 Nanocomposites on Interfacial and Foam Ability Properties
- Synthesis and Properties of Alkyl Polyglycoside Polyoxypropylene Ethers
- Surface Properties and Adsorption Behavior of Alkyl Glycoside Tartarate
- Micellar Catalysis
- Trivalent Ruthenium and Iridium Salt: Excellent Homogeneous Catalysts for Cyclic Alcohol Oxidation in Micellar Media
- Application
- Preparation and Release Properties of Cationic Flavor Microcapsules with Tetradecyl Allyldimethyl Ammonium Bromide (TADAB) as Main Shell Material
- Synthesis, Characterization, Flocculation and Antistatic Properties of Poly(Methacryloyloxyethyl trimethyl Ammonium Chloride)
- Physical Chemistry
- Removal of Toxic Eosin Y Dye from Water Samples by Cloud Point Extraction using Triton X-114 as Nonionic Surfactant
- Synthesis
- Synthesis and Properties of Cationic Gemini Surfactants with Amide Groups
- Synthesis, Characterization, and Properties of Acyl Glycine, Alanine, Valine, and Leucine Derived from Vegetable Oils and Beef Tallow