Trivalent Ruthenium and Iridium Salt: Excellent Homogeneous Catalysts for Cyclic Alcohol Oxidation in Micellar Media
-
Suman Chowdhury
Abstract
Oxidation of cyclohexanol, a six membered cyclic alcohol, by Ce(IV) is a slow-moving reaction. Therefore, it was investigated in a comparative study whether the oxidation rate can be increased by adding trace amounts of Ru(III) and Ir(III) metal catalysts in anionic (sodium dodecyl sulfate) and cationic (cetylpyridinium chloride) micellar media. The kinetics of the oxidation of cyclohexanol with Ce(IV) in acidic medium has been studied spectrophotometrically at 28°C under pseudo 1st order reaction condition. Based on the spectroscopic evidence the mechanisms for the reactions taking place in the presence of these metal catalysts were proposed.
Kurzfassung
Die Oxidationreaktion des sechsgliedrigen zyklischen Alkohols Cyclohexanol durch Ce(IV) läuft nur langsam ab. Daher wurde in einer vergleichenden Studie untersucht, ob durch Zugabe von Ru(III)- und Ir(III)-Metallkatalysatoren in Spurenmengen die Oxidationsgeschwindigkeit in anionischen (Natriumdodecylsulfat) und kationischen (Cetylpyridiniumchlorid) mizellaren Medien erhöht werden kann. Die Kinetik der Oxidation von Cyclohexanol mit Ce(IV) in saurem Medium wurde spektrophotometrisch bei 28°C unter Reaktionsbedingungen Pseudo-1.-Ordnung untersucht, und anhand der spektroskopischen Nachweise wurden die Mechanismen für die in Gegenwart dieser Metallkatalysatoren ablaufenden Reaktionen vorgeschlagen.
References
1. Musser, M. T.: Cyclohexanol and Cyclohexanone in Ullmann's Encyclopedia of Industrial Chemistry Wiley-VCH Weinheim2005. 10.1002/14356007.a08_217Suche in Google Scholar
2. Stevens, R. V., Chapman, K. T., and Weller, H. N.: Convenient and Inexpensive Procedure for Oxidation of Secondary Alcohols to KetonesJ. Org. Chem.45 (1980) 2030–2032. 10.1021/jo01298a066Suche in Google Scholar
3. Fawzy, A.: Oxidation of alginate and pectate biopolymers by cerium(IV) in perchloric and sulfuric acid solutions: A comparative kinetic and mechanistic study Carbohydrate Polymers;138 (2016) 356–364. 26794772 10.1016/j.carbpol.2015.10.076Suche in Google Scholar
4. Ghosh, M. K. and Rajput, S. K.: Kinetics and Mechanism of Palladium (II) Catalyzed Oxidation of D-(+) Galactose by Cerium(IV) in Aqueous Acidic Medium Chem. Sci. Int. J.4 (2014) 384–400. 10.9734/ACSJ/2014/7223Suche in Google Scholar
5. Saha, R., Nandi, R. and Saha, B.: Sources and Toxicity of Hexavalent ChromiumJ. Coord. Chem.64 (2011) 1782–1806. 10.1080/00958972.2011.583646Suche in Google Scholar
6. Jakupec, M. A., Unfried, P. and Keppler, B. K.: Pharmacological properties of cerium compunds Rev. Physiol. Bioch. P.153 (2005) 101–111. 15674649 10.1007/s10254-004-0024-6Suche in Google Scholar
7. Kilbourn, B. T.: Cerium and Cerium Compounds, Wiley Online Library, 2011. 10.1002/0471238961.0305180911091202.a01.pub3Suche in Google Scholar
8. Das, A. K.: Kinetic and mechanistic aspects of metal ion catalysis in cerium(IV) oxidation Coord. Chem. Rev.213 (2001) 307–325. 10.1016/S0010-8545(00)00376-3Suche in Google Scholar
9. Mondal, S. K., Kar, D., Das, M. and Das, A. K.: A comparative kinetic study of iridium(III) catalysis in cerium(IV) oxidation of dioxane in aqueous sulfuric acid and perchloric acid media Transition Met. Chem.23 (1998) 593–598. 10.1023/A:1006992905510Suche in Google Scholar
10. Zhang, C., Liu, F., Zhai, Y., Ariga, H., Yi, N., Liu, Y., Asakura, K., Stephanopoulos, M. F. and He, H.: Angewandte Chemie International Edition51 (2012) 9628–9632. 10.1002/anie.201202034Suche in Google Scholar PubMed
11. Chowdhury, S., Rakshit, A., Acharjee, A., Ghosh, A., Mahali, K. and Saha, B.: Ru(III) catalysed oxidation of 2-propanol by Cr(VI) in micellar mediaJ. Mol. Liq.290 (2019) 111247. 10.1016/j.molliq.2019.111247Suche in Google Scholar
12. Anastas, P. T. and Warner, J. C.: Green Chemistry: Theory and Practice, Oxford University Press: New York, 1998.Suche in Google Scholar
13. Tang, S. L. Y., Smith, R. L. and Poliakoffa, M.: Principles of green chemistry: Productively Green Chem.7 (2005) 761–762. 10.1039/B513020BSuche in Google Scholar
14. Anastas, P. and Eghbali, N.: Green Chemistry: Principles and Practice Chem. Soc. Rev.39 (2010) 301–312. 20023854 10.1039/B918763BSuche in Google Scholar PubMed
15. Chowdhury, S., Rakshit, A., Acharjee, A. and Saha, B.: Novel Amphiphiles and Their Applications for Different Purposes with Special Emphasis on Polymeric Surfactants ChemistrySelect4 (2019) 6978–6995. 10.1002/slct.201901160Suche in Google Scholar
16. Rub, M. A., Azum, N. and Asiri, A. M.: Binary Mixtures of Sodium Salt of Ibuprofen and Selected Bile Salts: Interface, Micellar, Thermodynamic, and Spectroscopic StudyJ. Chem. Eng. Data62 (2017) 3216–3228. 10.1021/acs.jced.7b00298Suche in Google Scholar
17. Kumar, D. and Rub, M. A.: Interaction of ninhydrin with chromium-glycylglycine complex in the presence of dimeric gemini surfactantsJ. Mol. Liq.250 (2018) 329–334. 10.1016/j.molliq.2017.11.172Suche in Google Scholar
18. Chashmi, P. J. and Bagheri, A.: The strong synergistic interaction between surface active ionic liquid and anionic surfactant in the mixed micelle using the spectrophotometric methodJ. Mol. Liq.269 (2018) 816–823. 10.1016/j.molliq.2018.08.094Suche in Google Scholar
19. Prati, L. and Villa, A.: Gold Colloids: From Quasi-Homogeneous to Heterogeneous Catalytic Systems Acc. Chem. Res.47 (2014) 855–863. 24266851 10.1021/ar400170jSuche in Google Scholar PubMed
20. Pillai, S. A., Lee, C. F., Chen, L. J., Bahadur, P., Aswal, V. K. and Bahadura, P.: Thermal and scattering studies of Tetronic® 1304 micelles in the presence of industrially important glycols, their oligomers, cellosolves, carbitols, ethers and estersColloids Surf. A506 (2016) 576–585. 10.1016/j.colsurfa.2016.07.029Suche in Google Scholar
21. Posokhov, Y. and Kyrychenko, A.: Location of fluorescent probes (2′-hydroxy derivatives of 2,5-diaryl-1,3-oxazole) in lipid membrane studied by fluorescence spectroscopy and molecular dynamics simulation Biophys. Chem.235 (2018) 9–18. 29407905 10.1016/j.bpc.2018.01.005Suche in Google Scholar PubMed
22. Ar'ev, I. A., Klimenko, N. A., Nevinnaya, L. V. and Russu, A. V.: Specific features of the solubilization of multinuclear aromatic hydrocarbons in triton X-100 micelles Colloid J.68 (2006) 529–532. 10.1134/S1061933X0Suche in Google Scholar
23. Ghosh, S., Ray, G. B. and Mondal, S.: Physicochemical investigation on the bulk and surface properties of the binary mixtures of N-methyl-N-dodecanoyl sodium glycinate (SDDS) and N-methyl-N-decanoyl glucamine (MEGA 10) in aqueous medium Fluid Phase Equilib.405 (2015) 46–54. 10.1016/j.fluid.2015.07.028Suche in Google Scholar
24. Kumar, H. and Katal, A.: Interaction of cationic surfactant cetyltrimethylammonium bromide (CTAB) with hydrophilic ionic liquid 1-butyl-3-methylimidazolium chloride [C4 mim][Cl] at different temperatures – Conductometric and FT-IR spectroscopic studyJ. Mol. Liq.266 (2018) 252–258. 10.1016/j.molliq.2018.06.082Suche in Google Scholar
25. Umeasiegbu, C. D., Balakotaiah, V. and Krishnamoorti, R.: pH-Induced Re-entrant Microstructural Transitions in Cationic Surfactant–Hydrotrope Mixtures Langmuir32 (2016) 655–663. 26654713 10.1021/acs.langmuir.5b02211Suche in Google Scholar PubMed
26. Acharjee, A., Rakshit, A., Chowdhury, S., Malik, S., Barman, M. K., Ali, M. A. and Saha, B.: Micellar catalysed and heteroaromatic base promoted rate enhancement of oxidation of an alicyclic alcohol in aqueous mediumJ. Mol. Liq.277 (2019) 360–371. 10.1016/j.molliq.2018.12.082Suche in Google Scholar
27. Acharjee, A., Rakshit, A., Chowdhury, S., Datta, I., Barman, M. K., Ali, M. A. and Saha, B.: Micellar catalysed oxidation of hydrophobic fatty alcohol in aqueous mediumJ. Mol. Liq.293 (2019) 111475. 10.1016/j.molliq.2019.111475Suche in Google Scholar
28. Ghosh, A., Das, P., Saha, D., Sar, P., Ghosh, S. K. and Saha, B.: Rate enhancement via sodium dodecyl sulfate (SDS) encapsulation of metal-mediated cerium(IV) oxidation of d-mannitol to d-mannose at room temperature and pressure: a kinetic and mechanistic approach Res. Chem. Intermediat.42 (2016) 2619–2639. 10.1007/s11164-015-2171-6Suche in Google Scholar
29. Singh, A. K., Sen, N., Chatterjee, S. K. and Susan, M. A. B. H.: Kinetic study of oxidation of paracetamol by water-soluble colloidal MnO2 in the presence of an anionic surfactant Colloid Polym. Sci.294 (2016) 1611–1622. 10.1007/s00396-016-3921-8Suche in Google Scholar
30. Ghosh, A., Saha, R., Sar, P. and Saha, B.: Rate enhancement via micelle encapsulation for room temperature metal catalyzed Ce(IV) oxidation of formaldehyde to formic acid in aqueous medium at atmospheric pressure: A kinetic approachJ. Mol. Liq.186 (2013) 122–130. 10.1016/j.molliq.2013.07.003Suche in Google Scholar
31. Sumathi, T., Shanmugasundaram, P. and Chandramohan, G.: A kinetic and mechanistic study on the silver (I)-catalyzed oxidation of l-alanine by cerium (IV) in sulfuric acid medium Arab. J. Chem.4 (2011) 427–435. 10.1016/j.arabjc.2010.07.002Suche in Google Scholar
32. Sumathi, T., Shanmugasundaram, P. and Chandramohan, G.: A kinetic and mechanistic study on the silver(I) catalyzed oxidation of l-Serine by cerium(IV) in sulfuric acid mediumJ. Saudi Chem. Soc.17 (2013) 227–235. 10.1016/j.jscs.2011.03.011Suche in Google Scholar
33. Mann, F. G. and Saunders, B. C.: Practical Organic Chemistry, 4th edition, Longman, New York, 1960.Suche in Google Scholar
34. Jabbari, M. and Gharib, F.: Kinetics and mechanism of the reaction of catechol with ceric ion in the presence and absence of iridium(III) catalyst in acidic media Monatsh. Chem.143 (2012) 997–1004. 10.1007/s00706-011-0676-2Suche in Google Scholar
35. Briois, V., Lützenkirchen-Hecht, D., Villain, F., Fonda, E., Belin, S., Griesebock, B. and Frahm, R.: J. Phys. Chem. A109 (2005) 320–329. 16833350 10.1021/jp046691tSuche in Google Scholar PubMed
36. Department of Chemistry, Hangzhou University, Handbook of Analytical Chemistry, Chemical Industry Press, Beijing, 1982. 618.Suche in Google Scholar
37. Kulkarni, R. M., Bhamare, V. S. and Santhakumari, B.: Mechanistic and spectroscopic investigations of Ru3+-catalyzed oxidative degradation of azidothymidine by heptavalent manganese at environmentally relevant pH Desalin. Water Treat.57 (2016) 28349–28362. 10.1080/19443994.2016.1187090Suche in Google Scholar
38. Muthusamya, S., Kumarswamyreddy, N., Kesavan, V. and Chandrasekaran, S.: Recent advances in aerobic oxidation with ruthenium catalysts Tetrahedron Lett.57 (2016) 5551–5559. 10.1016/j.tetlet.2016.11.024Suche in Google Scholar
39. Kondo, T., Kimura, Y., Yamada, H. and Toshimitsu, A.: Ruthenium-Based Catalysts for Aerobic Oxidation of Alcohols, Book: Transition Metal Catalysis in Aerobic Alcohol Oxidation, 2014. 10.1039/9781782621652-00070Suche in Google Scholar
40. Jantke, D., Cokoja, M., Drees, M., Herrmann, W. A. and Kühn, F. E.: Ruthenium-Catalyzed Hydrogenation of Oxygen-Functionalized Aromatic Compounds in Water, ChemCatChem5 (2013) 3241–3248. 10.1002/cctc.201300195Suche in Google Scholar
41. Pavlova, A. and Meijer, E. J.: Understanding the Role of Water in Aqueous Ruthenium-Catalyzed Transfer Hydrogenation of Ketones ChemPhysChem13 (2012) 3492–3496. 22927215 10.1002/cphc.201200454Suche in Google Scholar PubMed
42. Zhou, Z., Ma, Q., Zhang, A. and Wu, L.: Synthesis of WaterSoluble Monotosylated Ethylenediamines and Their Application in Ruthenium and Iridium-Catalyzed Transfer Hydrogenation of Aldehydes Appl. Organomet. Chem.25 (2011) 856–861. 10.1002/aoc.1824Suche in Google Scholar
43. Malik, S., Saha, D., Mondal, M. H., Sar, P., Ghosh, A., Mahali, K. and Saha, B.: Micellar effect on hetero-aromatic nitrogen base promoted chromic acid oxidation of 1.3-propanediol in aqueous media at room temperatureJ. Mol. Liq.225 (2017) 207–216. 10.1016/j.molliq.2016.11.033Suche in Google Scholar
44. Ramakrishna, K. and Sivasankar, C.: Iridium Catalyzed Acceptor/acceptor Carbene Insertion into N–H Bonds in Water Org. Biomol. Chem.15 (2017) 2392–2396. 28247903 10.1039/C7OB00177KSuche in Google Scholar
45. Sun, M., Campbell, J., Kang, G., Wang, H. and Ni, B.: Imidazolium Ion Tethered TsDPENs as Efficient Ligands for Iridium Catalyzed Asymmetric Transfer Hydrogenation of α-Keto Phosphonates in WaterJ. Organomet. Chem.810 (2016) 12–14. 10.1016/j.jorganchem.2016.03.010Suche in Google Scholar
46. Qu, P., Sun, C., Ma, J. and Li, F.: The N-Alkylation of Sulfonamides with Alcohols in Water Catalyzed by the Water-Soluble Iridium Complex {Cp∗Ir[6,6′-(OH)2bpy](H2O)}[OTf]2 Adv. Synth. Catal.356 (2014) 447–459. 10.1002/adsc.201300711Suche in Google Scholar
47. Ghosh, A., Saha, R. and Saha, B.: Effect of CHAPS and CPC micelles on Ir(III) catalyzed Ce(IV) oxidation of aliphatic alcohols at room temperature and pressureJ. Mol. Liq.196 (2014) 223–237. 10.1016/j.molliq.2014.03.037Suche in Google Scholar
48. Ghosh, A., Saha, R., Mukherjee, K., Sar, P., Ghosh, S. K., S.Malik, Bhattacharyya, S. S. and Saha, B.: catalyzed Ce(IV) oxidation of p-chlorobenzaldehyde to p-chlorobenzoic acid in aqueous medium at atmospheric pressureJ. Mol. Liq.190 (2014) 81–93. 10.1016/j.molliq.2013.10.029Suche in Google Scholar
49. Yong-qing, Z., Hong-mei, L., Lin, Y. and Guo-zhong, Y.: Kinetics and Mechanism of Iridium (III) – Catalyzed Oxidation of Ethanol Amine by Cerium (IV) in Sulfuric Acid Media Chem. Res. Chin. Univ.23 (2007) 333–338. 10.1016/S1005-9040(07)60071-3Suche in Google Scholar
50. Nimbalkar, L. V., Chavan, A. M. and Gokavi, G. S.: Kinetics and mechanism of cerium(IV) oxidation of primary and secondary alcohols catalysed by chromium(III)J. Phys. Org. Chem.11(1998) 697–700. 10.1002/(SICI)1099-1395(1998100)11-10<697::AID-POC25>3.0.CO;2-CSuche in Google Scholar
© 2020, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Novel Surfactants
- The Effects of the Glucose-Based Cationic-Nonionic Surfactant with Ag-SiO2 Nanocomposites on Interfacial and Foam Ability Properties
- Synthesis and Properties of Alkyl Polyglycoside Polyoxypropylene Ethers
- Surface Properties and Adsorption Behavior of Alkyl Glycoside Tartarate
- Micellar Catalysis
- Trivalent Ruthenium and Iridium Salt: Excellent Homogeneous Catalysts for Cyclic Alcohol Oxidation in Micellar Media
- Application
- Preparation and Release Properties of Cationic Flavor Microcapsules with Tetradecyl Allyldimethyl Ammonium Bromide (TADAB) as Main Shell Material
- Synthesis, Characterization, Flocculation and Antistatic Properties of Poly(Methacryloyloxyethyl trimethyl Ammonium Chloride)
- Physical Chemistry
- Removal of Toxic Eosin Y Dye from Water Samples by Cloud Point Extraction using Triton X-114 as Nonionic Surfactant
- Synthesis
- Synthesis and Properties of Cationic Gemini Surfactants with Amide Groups
- Synthesis, Characterization, and Properties of Acyl Glycine, Alanine, Valine, and Leucine Derived from Vegetable Oils and Beef Tallow
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Novel Surfactants
- The Effects of the Glucose-Based Cationic-Nonionic Surfactant with Ag-SiO2 Nanocomposites on Interfacial and Foam Ability Properties
- Synthesis and Properties of Alkyl Polyglycoside Polyoxypropylene Ethers
- Surface Properties and Adsorption Behavior of Alkyl Glycoside Tartarate
- Micellar Catalysis
- Trivalent Ruthenium and Iridium Salt: Excellent Homogeneous Catalysts for Cyclic Alcohol Oxidation in Micellar Media
- Application
- Preparation and Release Properties of Cationic Flavor Microcapsules with Tetradecyl Allyldimethyl Ammonium Bromide (TADAB) as Main Shell Material
- Synthesis, Characterization, Flocculation and Antistatic Properties of Poly(Methacryloyloxyethyl trimethyl Ammonium Chloride)
- Physical Chemistry
- Removal of Toxic Eosin Y Dye from Water Samples by Cloud Point Extraction using Triton X-114 as Nonionic Surfactant
- Synthesis
- Synthesis and Properties of Cationic Gemini Surfactants with Amide Groups
- Synthesis, Characterization, and Properties of Acyl Glycine, Alanine, Valine, and Leucine Derived from Vegetable Oils and Beef Tallow