Trivalent Ruthenium and Iridium Salt: Excellent Homogeneous Catalysts for Cyclic Alcohol Oxidation in Micellar Media
-
Suman Chowdhury
, Atanu Rakshit , Animesh Acharjee , Aniruddha Ghosh , Kalachand Mahali and Bidyut Saha
Abstract
Oxidation of cyclohexanol, a six membered cyclic alcohol, by Ce(IV) is a slow-moving reaction. Therefore, it was investigated in a comparative study whether the oxidation rate can be increased by adding trace amounts of Ru(III) and Ir(III) metal catalysts in anionic (sodium dodecyl sulfate) and cationic (cetylpyridinium chloride) micellar media. The kinetics of the oxidation of cyclohexanol with Ce(IV) in acidic medium has been studied spectrophotometrically at 28°C under pseudo 1st order reaction condition. Based on the spectroscopic evidence the mechanisms for the reactions taking place in the presence of these metal catalysts were proposed.
Kurzfassung
Die Oxidationreaktion des sechsgliedrigen zyklischen Alkohols Cyclohexanol durch Ce(IV) läuft nur langsam ab. Daher wurde in einer vergleichenden Studie untersucht, ob durch Zugabe von Ru(III)- und Ir(III)-Metallkatalysatoren in Spurenmengen die Oxidationsgeschwindigkeit in anionischen (Natriumdodecylsulfat) und kationischen (Cetylpyridiniumchlorid) mizellaren Medien erhöht werden kann. Die Kinetik der Oxidation von Cyclohexanol mit Ce(IV) in saurem Medium wurde spektrophotometrisch bei 28°C unter Reaktionsbedingungen Pseudo-1.-Ordnung untersucht, und anhand der spektroskopischen Nachweise wurden die Mechanismen für die in Gegenwart dieser Metallkatalysatoren ablaufenden Reaktionen vorgeschlagen.
References
1. Musser, M. T.: Cyclohexanol and Cyclohexanone in Ullmann's Encyclopedia of Industrial Chemistry Wiley-VCH Weinheim2005. 10.1002/14356007.a08_217Search in Google Scholar
2. Stevens, R. V., Chapman, K. T., and Weller, H. N.: Convenient and Inexpensive Procedure for Oxidation of Secondary Alcohols to KetonesJ. Org. Chem.45 (1980) 2030–2032. 10.1021/jo01298a066Search in Google Scholar
3. Fawzy, A.: Oxidation of alginate and pectate biopolymers by cerium(IV) in perchloric and sulfuric acid solutions: A comparative kinetic and mechanistic study Carbohydrate Polymers;138 (2016) 356–364. 26794772 10.1016/j.carbpol.2015.10.076Search in Google Scholar
4. Ghosh, M. K. and Rajput, S. K.: Kinetics and Mechanism of Palladium (II) Catalyzed Oxidation of D-(+) Galactose by Cerium(IV) in Aqueous Acidic Medium Chem. Sci. Int. J.4 (2014) 384–400. 10.9734/ACSJ/2014/7223Search in Google Scholar
5. Saha, R., Nandi, R. and Saha, B.: Sources and Toxicity of Hexavalent ChromiumJ. Coord. Chem.64 (2011) 1782–1806. 10.1080/00958972.2011.583646Search in Google Scholar
6. Jakupec, M. A., Unfried, P. and Keppler, B. K.: Pharmacological properties of cerium compunds Rev. Physiol. Bioch. P.153 (2005) 101–111. 15674649 10.1007/s10254-004-0024-6Search in Google Scholar
7. Kilbourn, B. T.: Cerium and Cerium Compounds, Wiley Online Library, 2011. 10.1002/0471238961.0305180911091202.a01.pub3Search in Google Scholar
8. Das, A. K.: Kinetic and mechanistic aspects of metal ion catalysis in cerium(IV) oxidation Coord. Chem. Rev.213 (2001) 307–325. 10.1016/S0010-8545(00)00376-3Search in Google Scholar
9. Mondal, S. K., Kar, D., Das, M. and Das, A. K.: A comparative kinetic study of iridium(III) catalysis in cerium(IV) oxidation of dioxane in aqueous sulfuric acid and perchloric acid media Transition Met. Chem.23 (1998) 593–598. 10.1023/A:1006992905510Search in Google Scholar
10. Zhang, C., Liu, F., Zhai, Y., Ariga, H., Yi, N., Liu, Y., Asakura, K., Stephanopoulos, M. F. and He, H.: Angewandte Chemie International Edition51 (2012) 9628–9632. 10.1002/anie.201202034Search in Google Scholar PubMed
11. Chowdhury, S., Rakshit, A., Acharjee, A., Ghosh, A., Mahali, K. and Saha, B.: Ru(III) catalysed oxidation of 2-propanol by Cr(VI) in micellar mediaJ. Mol. Liq.290 (2019) 111247. 10.1016/j.molliq.2019.111247Search in Google Scholar
12. Anastas, P. T. and Warner, J. C.: Green Chemistry: Theory and Practice, Oxford University Press: New York, 1998.Search in Google Scholar
13. Tang, S. L. Y., Smith, R. L. and Poliakoffa, M.: Principles of green chemistry: Productively Green Chem.7 (2005) 761–762. 10.1039/B513020BSearch in Google Scholar
14. Anastas, P. and Eghbali, N.: Green Chemistry: Principles and Practice Chem. Soc. Rev.39 (2010) 301–312. 20023854 10.1039/B918763BSearch in Google Scholar PubMed
15. Chowdhury, S., Rakshit, A., Acharjee, A. and Saha, B.: Novel Amphiphiles and Their Applications for Different Purposes with Special Emphasis on Polymeric Surfactants ChemistrySelect4 (2019) 6978–6995. 10.1002/slct.201901160Search in Google Scholar
16. Rub, M. A., Azum, N. and Asiri, A. M.: Binary Mixtures of Sodium Salt of Ibuprofen and Selected Bile Salts: Interface, Micellar, Thermodynamic, and Spectroscopic StudyJ. Chem. Eng. Data62 (2017) 3216–3228. 10.1021/acs.jced.7b00298Search in Google Scholar
17. Kumar, D. and Rub, M. A.: Interaction of ninhydrin with chromium-glycylglycine complex in the presence of dimeric gemini surfactantsJ. Mol. Liq.250 (2018) 329–334. 10.1016/j.molliq.2017.11.172Search in Google Scholar
18. Chashmi, P. J. and Bagheri, A.: The strong synergistic interaction between surface active ionic liquid and anionic surfactant in the mixed micelle using the spectrophotometric methodJ. Mol. Liq.269 (2018) 816–823. 10.1016/j.molliq.2018.08.094Search in Google Scholar
19. Prati, L. and Villa, A.: Gold Colloids: From Quasi-Homogeneous to Heterogeneous Catalytic Systems Acc. Chem. Res.47 (2014) 855–863. 24266851 10.1021/ar400170jSearch in Google Scholar PubMed
20. Pillai, S. A., Lee, C. F., Chen, L. J., Bahadur, P., Aswal, V. K. and Bahadura, P.: Thermal and scattering studies of Tetronic® 1304 micelles in the presence of industrially important glycols, their oligomers, cellosolves, carbitols, ethers and estersColloids Surf. A506 (2016) 576–585. 10.1016/j.colsurfa.2016.07.029Search in Google Scholar
21. Posokhov, Y. and Kyrychenko, A.: Location of fluorescent probes (2′-hydroxy derivatives of 2,5-diaryl-1,3-oxazole) in lipid membrane studied by fluorescence spectroscopy and molecular dynamics simulation Biophys. Chem.235 (2018) 9–18. 29407905 10.1016/j.bpc.2018.01.005Search in Google Scholar PubMed
22. Ar'ev, I. A., Klimenko, N. A., Nevinnaya, L. V. and Russu, A. V.: Specific features of the solubilization of multinuclear aromatic hydrocarbons in triton X-100 micelles Colloid J.68 (2006) 529–532. 10.1134/S1061933X0Search in Google Scholar
23. Ghosh, S., Ray, G. B. and Mondal, S.: Physicochemical investigation on the bulk and surface properties of the binary mixtures of N-methyl-N-dodecanoyl sodium glycinate (SDDS) and N-methyl-N-decanoyl glucamine (MEGA 10) in aqueous medium Fluid Phase Equilib.405 (2015) 46–54. 10.1016/j.fluid.2015.07.028Search in Google Scholar
24. Kumar, H. and Katal, A.: Interaction of cationic surfactant cetyltrimethylammonium bromide (CTAB) with hydrophilic ionic liquid 1-butyl-3-methylimidazolium chloride [C4 mim][Cl] at different temperatures – Conductometric and FT-IR spectroscopic studyJ. Mol. Liq.266 (2018) 252–258. 10.1016/j.molliq.2018.06.082Search in Google Scholar
25. Umeasiegbu, C. D., Balakotaiah, V. and Krishnamoorti, R.: pH-Induced Re-entrant Microstructural Transitions in Cationic Surfactant–Hydrotrope Mixtures Langmuir32 (2016) 655–663. 26654713 10.1021/acs.langmuir.5b02211Search in Google Scholar PubMed
26. Acharjee, A., Rakshit, A., Chowdhury, S., Malik, S., Barman, M. K., Ali, M. A. and Saha, B.: Micellar catalysed and heteroaromatic base promoted rate enhancement of oxidation of an alicyclic alcohol in aqueous mediumJ. Mol. Liq.277 (2019) 360–371. 10.1016/j.molliq.2018.12.082Search in Google Scholar
27. Acharjee, A., Rakshit, A., Chowdhury, S., Datta, I., Barman, M. K., Ali, M. A. and Saha, B.: Micellar catalysed oxidation of hydrophobic fatty alcohol in aqueous mediumJ. Mol. Liq.293 (2019) 111475. 10.1016/j.molliq.2019.111475Search in Google Scholar
28. Ghosh, A., Das, P., Saha, D., Sar, P., Ghosh, S. K. and Saha, B.: Rate enhancement via sodium dodecyl sulfate (SDS) encapsulation of metal-mediated cerium(IV) oxidation of d-mannitol to d-mannose at room temperature and pressure: a kinetic and mechanistic approach Res. Chem. Intermediat.42 (2016) 2619–2639. 10.1007/s11164-015-2171-6Search in Google Scholar
29. Singh, A. K., Sen, N., Chatterjee, S. K. and Susan, M. A. B. H.: Kinetic study of oxidation of paracetamol by water-soluble colloidal MnO2 in the presence of an anionic surfactant Colloid Polym. Sci.294 (2016) 1611–1622. 10.1007/s00396-016-3921-8Search in Google Scholar
30. Ghosh, A., Saha, R., Sar, P. and Saha, B.: Rate enhancement via micelle encapsulation for room temperature metal catalyzed Ce(IV) oxidation of formaldehyde to formic acid in aqueous medium at atmospheric pressure: A kinetic approachJ. Mol. Liq.186 (2013) 122–130. 10.1016/j.molliq.2013.07.003Search in Google Scholar
31. Sumathi, T., Shanmugasundaram, P. and Chandramohan, G.: A kinetic and mechanistic study on the silver (I)-catalyzed oxidation of l-alanine by cerium (IV) in sulfuric acid medium Arab. J. Chem.4 (2011) 427–435. 10.1016/j.arabjc.2010.07.002Search in Google Scholar
32. Sumathi, T., Shanmugasundaram, P. and Chandramohan, G.: A kinetic and mechanistic study on the silver(I) catalyzed oxidation of l-Serine by cerium(IV) in sulfuric acid mediumJ. Saudi Chem. Soc.17 (2013) 227–235. 10.1016/j.jscs.2011.03.011Search in Google Scholar
33. Mann, F. G. and Saunders, B. C.: Practical Organic Chemistry, 4th edition, Longman, New York, 1960.Search in Google Scholar
34. Jabbari, M. and Gharib, F.: Kinetics and mechanism of the reaction of catechol with ceric ion in the presence and absence of iridium(III) catalyst in acidic media Monatsh. Chem.143 (2012) 997–1004. 10.1007/s00706-011-0676-2Search in Google Scholar
35. Briois, V., Lützenkirchen-Hecht, D., Villain, F., Fonda, E., Belin, S., Griesebock, B. and Frahm, R.: J. Phys. Chem. A109 (2005) 320–329. 16833350 10.1021/jp046691tSearch in Google Scholar PubMed
36. Department of Chemistry, Hangzhou University, Handbook of Analytical Chemistry, Chemical Industry Press, Beijing, 1982. 618.Search in Google Scholar
37. Kulkarni, R. M., Bhamare, V. S. and Santhakumari, B.: Mechanistic and spectroscopic investigations of Ru3+-catalyzed oxidative degradation of azidothymidine by heptavalent manganese at environmentally relevant pH Desalin. Water Treat.57 (2016) 28349–28362. 10.1080/19443994.2016.1187090Search in Google Scholar
38. Muthusamya, S., Kumarswamyreddy, N., Kesavan, V. and Chandrasekaran, S.: Recent advances in aerobic oxidation with ruthenium catalysts Tetrahedron Lett.57 (2016) 5551–5559. 10.1016/j.tetlet.2016.11.024Search in Google Scholar
39. Kondo, T., Kimura, Y., Yamada, H. and Toshimitsu, A.: Ruthenium-Based Catalysts for Aerobic Oxidation of Alcohols, Book: Transition Metal Catalysis in Aerobic Alcohol Oxidation, 2014. 10.1039/9781782621652-00070Search in Google Scholar
40. Jantke, D., Cokoja, M., Drees, M., Herrmann, W. A. and Kühn, F. E.: Ruthenium-Catalyzed Hydrogenation of Oxygen-Functionalized Aromatic Compounds in Water, ChemCatChem5 (2013) 3241–3248. 10.1002/cctc.201300195Search in Google Scholar
41. Pavlova, A. and Meijer, E. J.: Understanding the Role of Water in Aqueous Ruthenium-Catalyzed Transfer Hydrogenation of Ketones ChemPhysChem13 (2012) 3492–3496. 22927215 10.1002/cphc.201200454Search in Google Scholar PubMed
42. Zhou, Z., Ma, Q., Zhang, A. and Wu, L.: Synthesis of WaterSoluble Monotosylated Ethylenediamines and Their Application in Ruthenium and Iridium-Catalyzed Transfer Hydrogenation of Aldehydes Appl. Organomet. Chem.25 (2011) 856–861. 10.1002/aoc.1824Search in Google Scholar
43. Malik, S., Saha, D., Mondal, M. H., Sar, P., Ghosh, A., Mahali, K. and Saha, B.: Micellar effect on hetero-aromatic nitrogen base promoted chromic acid oxidation of 1.3-propanediol in aqueous media at room temperatureJ. Mol. Liq.225 (2017) 207–216. 10.1016/j.molliq.2016.11.033Search in Google Scholar
44. Ramakrishna, K. and Sivasankar, C.: Iridium Catalyzed Acceptor/acceptor Carbene Insertion into N–H Bonds in Water Org. Biomol. Chem.15 (2017) 2392–2396. 28247903 10.1039/C7OB00177KSearch in Google Scholar
45. Sun, M., Campbell, J., Kang, G., Wang, H. and Ni, B.: Imidazolium Ion Tethered TsDPENs as Efficient Ligands for Iridium Catalyzed Asymmetric Transfer Hydrogenation of α-Keto Phosphonates in WaterJ. Organomet. Chem.810 (2016) 12–14. 10.1016/j.jorganchem.2016.03.010Search in Google Scholar
46. Qu, P., Sun, C., Ma, J. and Li, F.: The N-Alkylation of Sulfonamides with Alcohols in Water Catalyzed by the Water-Soluble Iridium Complex {Cp∗Ir[6,6′-(OH)2bpy](H2O)}[OTf]2 Adv. Synth. Catal.356 (2014) 447–459. 10.1002/adsc.201300711Search in Google Scholar
47. Ghosh, A., Saha, R. and Saha, B.: Effect of CHAPS and CPC micelles on Ir(III) catalyzed Ce(IV) oxidation of aliphatic alcohols at room temperature and pressureJ. Mol. Liq.196 (2014) 223–237. 10.1016/j.molliq.2014.03.037Search in Google Scholar
48. Ghosh, A., Saha, R., Mukherjee, K., Sar, P., Ghosh, S. K., S.Malik, Bhattacharyya, S. S. and Saha, B.: catalyzed Ce(IV) oxidation of p-chlorobenzaldehyde to p-chlorobenzoic acid in aqueous medium at atmospheric pressureJ. Mol. Liq.190 (2014) 81–93. 10.1016/j.molliq.2013.10.029Search in Google Scholar
49. Yong-qing, Z., Hong-mei, L., Lin, Y. and Guo-zhong, Y.: Kinetics and Mechanism of Iridium (III) – Catalyzed Oxidation of Ethanol Amine by Cerium (IV) in Sulfuric Acid Media Chem. Res. Chin. Univ.23 (2007) 333–338. 10.1016/S1005-9040(07)60071-3Search in Google Scholar
50. Nimbalkar, L. V., Chavan, A. M. and Gokavi, G. S.: Kinetics and mechanism of cerium(IV) oxidation of primary and secondary alcohols catalysed by chromium(III)J. Phys. Org. Chem.11(1998) 697–700. 10.1002/(SICI)1099-1395(1998100)11-10<697::AID-POC25>3.0.CO;2-CSearch in Google Scholar
© 2020, Carl Hanser Publisher, Munich
Articles in the same Issue
- Contents/Inhalt
- Contents
- Novel Surfactants
- The Effects of the Glucose-Based Cationic-Nonionic Surfactant with Ag-SiO2 Nanocomposites on Interfacial and Foam Ability Properties
- Synthesis and Properties of Alkyl Polyglycoside Polyoxypropylene Ethers
- Surface Properties and Adsorption Behavior of Alkyl Glycoside Tartarate
- Micellar Catalysis
- Trivalent Ruthenium and Iridium Salt: Excellent Homogeneous Catalysts for Cyclic Alcohol Oxidation in Micellar Media
- Application
- Preparation and Release Properties of Cationic Flavor Microcapsules with Tetradecyl Allyldimethyl Ammonium Bromide (TADAB) as Main Shell Material
- Synthesis, Characterization, Flocculation and Antistatic Properties of Poly(Methacryloyloxyethyl trimethyl Ammonium Chloride)
- Physical Chemistry
- Removal of Toxic Eosin Y Dye from Water Samples by Cloud Point Extraction using Triton X-114 as Nonionic Surfactant
- Synthesis
- Synthesis and Properties of Cationic Gemini Surfactants with Amide Groups
- Synthesis, Characterization, and Properties of Acyl Glycine, Alanine, Valine, and Leucine Derived from Vegetable Oils and Beef Tallow
Articles in the same Issue
- Contents/Inhalt
- Contents
- Novel Surfactants
- The Effects of the Glucose-Based Cationic-Nonionic Surfactant with Ag-SiO2 Nanocomposites on Interfacial and Foam Ability Properties
- Synthesis and Properties of Alkyl Polyglycoside Polyoxypropylene Ethers
- Surface Properties and Adsorption Behavior of Alkyl Glycoside Tartarate
- Micellar Catalysis
- Trivalent Ruthenium and Iridium Salt: Excellent Homogeneous Catalysts for Cyclic Alcohol Oxidation in Micellar Media
- Application
- Preparation and Release Properties of Cationic Flavor Microcapsules with Tetradecyl Allyldimethyl Ammonium Bromide (TADAB) as Main Shell Material
- Synthesis, Characterization, Flocculation and Antistatic Properties of Poly(Methacryloyloxyethyl trimethyl Ammonium Chloride)
- Physical Chemistry
- Removal of Toxic Eosin Y Dye from Water Samples by Cloud Point Extraction using Triton X-114 as Nonionic Surfactant
- Synthesis
- Synthesis and Properties of Cationic Gemini Surfactants with Amide Groups
- Synthesis, Characterization, and Properties of Acyl Glycine, Alanine, Valine, and Leucine Derived from Vegetable Oils and Beef Tallow