Surface Properties and Adsorption Behavior of Alkyl Glycoside Tartarate
-
Zhiyu Wu
Abstract
The equilibrium and dynamic surface properties and the adsorption behavior of alkyl glycosides and their derivatives alkyl glycoside tartarates at the air/water solution interface were investigated. The equilibrium surface tension and the critical micelle concentration were measured by Wilhelmy plate method and the dynamic surface tension was measured by maximum bubble pressure method. The data display that the surface tension of the alkyl glycoside tartarate surfactants was significantly reduced (24 mN m–1) compared to that of alkyl glycosides, which indicated that alkyl glycoside tartarates have a strong activity at the air/water interface. The study also found that the alkyl glycoside tartarates reach the meso-equilibrium region faster, adsorb more easily at the interface, and have a lower adsorption energy. In addition, the study further confirmed the existence of energy potential barrier.
Kurzfassung
Die Gleichgewichts- und die dynamischen Oberflächeneigenschaften sowie das Adsorptionsverhalten von Alkylglycosiden und ihren Derivaten, den Alkylglycosidtartaraten, an der Grenzfläche Luft/wässrige Lösung wurden untersucht. Die Gleichgewichts-Oberflächenspannung und die kritische Mizellenbildungskonzentration wurden mit der Wilhelmy-Plattenmethode gemessen; die dynamische Oberflächenspannung wurde mit der Methode des maximalen Blasendrucks gemessen. Die Daten zeigen, dass die Oberflächenspannung der Alkylglycosidtartarat-Tenside im Vergleich zu den Alkylglycosiden signifikant reduziert war (24 mN m–1), was darauf hinweist, dass Alkylglycosidtartarate an der Grenzfläche Luft/Wasser eine starke Aktivität aufweisen. Die Studie ergab auch, dass die Alkylglycosidtartarate den meso-Gleichgewichtsbereich schneller erreichten, leichter an der Grenzfläche absorbierten und eine geringere Adsorptionsenergie aufwiesen. Darüber hinaus bestätigte die Studie die Existenz einer Energiepotenzial-Barriere.
References
1. Chang, C. H. and Franses, E. I.: Adsorption dynamics of surfactants at the air/water interface: a critical review of mathematical models, data, and mechanisms, Colloids Surf., A.100 (1985) 1–45. 10.1016/0927-7757(94)03061-4Suche in Google Scholar
2. Eastoe, J. and Dalton, J. S.: Dynamic surface tension and adsorption mechanisms of surfactants at the air/water interface, Adv. Colloid Interface Sci.85 (2000) 103–144. 10.1016/S0001-8686(99)00017-2Suche in Google Scholar PubMed
3. Prosser, A. J. and Franses, E. I.: Adsorption and surface tension of ionic surfactants at the air/water interface: review and evaluation of equilibrium models, Colloids Surf., A.178 (2001) 1–40. 10.1016/S0927-7757(00)00706-8Suche in Google Scholar
4. Gao, Y. Y. and Yang, X. Q.: Equilibrium and dynamic surface properties of sulfosuccinate surfactants, J. Surfactants Deterg.17 (2014) 1117–1123. 10.1007/s11743-014-1612-3Suche in Google Scholar
5. Xu, Y. L., Wang, T. T. and Zhang, H.: Study on the preparation of fatty acid polyols from n-butanol ring-opened epoxy rapeseed oil, J. Anhui Agri. Sci.17 (2011) 231–233. 10.13989/j.cnki.0517-6611.2011.01.010Suche in Google Scholar
6. Moghadam, M., Tangestaninejad. S. and Mirkhani. V.: Rapid and efficient ring opening of epoxides catalyzed by a new electron deficient tin (IV) porphyrin, Tetrahedron.60 (2004) 6105–6111. 10.1016/j.tet.2004.05.069Suche in Google Scholar
7. Halidan, M., Nurm, M. and Wu, M. J.: One-step preparation of epoxy linseed oil by hydrogen peroxide method, Chemical Progress.25 (2006) 581–584. 10.19500/j.cnki.0367-6358.2006.10.009Suche in Google Scholar
8. Li, T. Y., Wang, C. and Qu, S. G.: Effect of hydrogen peroxide content on epoxidation of lard, Leather Chemicals.18 (2001) 34–36. 10.3969/j.issn.1674-0939.2001.03.010Suche in Google Scholar
9. Yang, X. Q., Zhang, J., Zhou, Y. and Bai, L.: Technical progress of alkyl glycosides and their derivatives. Household chemical industry, China Surfactant Detergent & Cosmetics.42 (2012) 213–219. 10.13218/j.cnki.csdc.2012.03.012Suche in Google Scholar
10. Rosen, M. J. and Kunjappu, J. T.: Surfactants and Interfacial Phenomena:Fourth Edition, Wiley.6 (2012) 779–779. 10.1002/9781118228920Suche in Google Scholar
11. Zana, R.: Critical micellization concentration of surfactants in aqueous solution and free energy of micellization, Langmuir.12 (1996) 1208–1211. 10.1021/la950691qSuche in Google Scholar
12. Rosen, M. J. and Aronson, S.: Standard free energies of adsorption of surfactants at the aqueous solution/air interface from surface tension data in the vicinity of the critical micelle concentration, Colloids Surf.3 (1981) 201–208. 10.1016/0166-6622(81)80037-6Suche in Google Scholar
13. Xi, Y. H. and Rosen, M. J.: Dynamic surface tension of aqueous surfactant solutions: I. Basic parameters, J Colloid Interface Sci.124 (1988) 652–659. 10.1016/0021-9797(88)90203-2Suche in Google Scholar
14. Rosen, M. J. and Song, L. D.: Dynamic surface tension of aqueous surfactant solutions 8. Effect of spacer on dynamic properties of gemini surfactant solutions, J Colloid Interface Sci.179 (1996) 261–268. 10.1006/jcis.1996.0212Suche in Google Scholar
15. Rosen, M. J. and Xi, Y. H.: Dynamic surface tension of aqueous surfactant solutions: 2. Parameters at 1 s and at mesoequilibrium, J Colloid Interface Sci.139 (1990) 397–407. 10.1016/0021-9797(90)90114-4Suche in Google Scholar
16. Ward, A. F. H. and Tordai, L.: Time-dependence of boundary tensions of solutions I. The role of diffusion in time-effects, J Chem Phys.14 (1946) 453–461. 10.1063/1.1724167Suche in Google Scholar
17. Fainerman, V. B., Makievski, A. V. and Miller, R.: The analysis of dynamic surface tension of sodium alkyl sulphate solutions, based on asymptotic equations of adsorption kinetic theory, Colloids Surf., A.87 (1994) 61–75. 10.1016/0927-7757(94)02747-1Suche in Google Scholar
18. Fainerman, V. B.: Kinetics of adsorption of ionic surfactants at the solution–air interface and the nature of the adsorption barrier. Colloids Surf.57 (1991) 249–266. 10.1016/0166-6622(91)80159-LSuche in Google Scholar
19. Filippov, L. K.: Dynamic surface tension of aqueous surfactant solutions: 1. Diffusion-convective controlled adsorption, J Colloid Interface Sci.163 (1994) 49–60. 10.1006/jcis.1994.1079Suche in Google Scholar
20. Filippov, L. K.: Dynamic surface tension of aqueous surfactant solutions: 2. Diffusion-kinetic-convective controlled adsorption, J Colloid Interface Sci.164 (1994) 471–482. 10.1006/jcis.1994.1190Suche in Google Scholar
21. Fainerman, V. B., Mys, A. V., Aksenenko, E. V., Makievski, A. V., Petkov, J. T., Yorke, J. and Miller, R.: Adsorption layer characteristics of Triton surfactants: 4. Dynamic surface tension and dilational visco-elasticity of micellar solutions, Colloids Surf., A.334 (2009) 22–27. 10.1016/j.colsurfa.2008.10.032Suche in Google Scholar
22. Gao, T. and Rosen, M. J.: Dynamic surface tension of aqueous surfactant solutions: 7. Physical significance of dynamic parameters and the induction period, J Colloid Interface Sci.172 (1995) 242–248. 10.1006/jcis.1995.1248Suche in Google Scholar
23. Chang, C. H. and Franses, E. I.: An analysis of the factors affecting dynamic tension measurements with the pulsating bubble surfactometer, J Colloid Interface Sci.164 (1994) 107–113. 10.1006/jcis.1994.1148Suche in Google Scholar
24. Eastoe, J., Dalton, J. S., Rogueda, P. G. A., Crooks, E. R., Pitt, A. R. and Simister, E. A.: Dynamic surface tensions of nonionic surfactant solutions, J Colloid Interface Sci.188 (1997) 423–430. 10.1006/jcis.1997.4778Suche in Google Scholar
25. Liggieri, L., Ravera, F. and Passerone, A.: A diffusion-based approach to mixed adsorption kinetics, Colloids Surf., A.114 (1996) 351–359. 10.1016/0927-7757(96)03650-3Suche in Google Scholar
26. Ravera, F., Liggieri, L. and Steinchen, A.: Sorption kinetics considered as a renormalized diffusion process, J Colloid Interface Sci.156 (1993) 109–116. 10.1006/jcis.1993.1088Suche in Google Scholar
© 2020, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Novel Surfactants
- The Effects of the Glucose-Based Cationic-Nonionic Surfactant with Ag-SiO2 Nanocomposites on Interfacial and Foam Ability Properties
- Synthesis and Properties of Alkyl Polyglycoside Polyoxypropylene Ethers
- Surface Properties and Adsorption Behavior of Alkyl Glycoside Tartarate
- Micellar Catalysis
- Trivalent Ruthenium and Iridium Salt: Excellent Homogeneous Catalysts for Cyclic Alcohol Oxidation in Micellar Media
- Application
- Preparation and Release Properties of Cationic Flavor Microcapsules with Tetradecyl Allyldimethyl Ammonium Bromide (TADAB) as Main Shell Material
- Synthesis, Characterization, Flocculation and Antistatic Properties of Poly(Methacryloyloxyethyl trimethyl Ammonium Chloride)
- Physical Chemistry
- Removal of Toxic Eosin Y Dye from Water Samples by Cloud Point Extraction using Triton X-114 as Nonionic Surfactant
- Synthesis
- Synthesis and Properties of Cationic Gemini Surfactants with Amide Groups
- Synthesis, Characterization, and Properties of Acyl Glycine, Alanine, Valine, and Leucine Derived from Vegetable Oils and Beef Tallow
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Novel Surfactants
- The Effects of the Glucose-Based Cationic-Nonionic Surfactant with Ag-SiO2 Nanocomposites on Interfacial and Foam Ability Properties
- Synthesis and Properties of Alkyl Polyglycoside Polyoxypropylene Ethers
- Surface Properties and Adsorption Behavior of Alkyl Glycoside Tartarate
- Micellar Catalysis
- Trivalent Ruthenium and Iridium Salt: Excellent Homogeneous Catalysts for Cyclic Alcohol Oxidation in Micellar Media
- Application
- Preparation and Release Properties of Cationic Flavor Microcapsules with Tetradecyl Allyldimethyl Ammonium Bromide (TADAB) as Main Shell Material
- Synthesis, Characterization, Flocculation and Antistatic Properties of Poly(Methacryloyloxyethyl trimethyl Ammonium Chloride)
- Physical Chemistry
- Removal of Toxic Eosin Y Dye from Water Samples by Cloud Point Extraction using Triton X-114 as Nonionic Surfactant
- Synthesis
- Synthesis and Properties of Cationic Gemini Surfactants with Amide Groups
- Synthesis, Characterization, and Properties of Acyl Glycine, Alanine, Valine, and Leucine Derived from Vegetable Oils and Beef Tallow