Startseite Stability of Emulsions and Nanoemulsions Stabilized with Biosurfactants, and their Antimicrobial Performance against Escherichia coli O157:H7 and Listeria monocytogenes
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Stability of Emulsions and Nanoemulsions Stabilized with Biosurfactants, and their Antimicrobial Performance against Escherichia coli O157:H7 and Listeria monocytogenes

  • Kangzi Ren , Buddhi P. Lamsal und Aubrey Mendonca
Veröffentlicht/Copyright: 1. Oktober 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Two novel biosurfactants – surfactin and its variant fatty acyl glutamic acid (FA-glu) – were compared with two commercial emulsifiers – lecithin, and a mixture of Tween 80 and lauric „arginate (TLA) – for formation and stability of emulsions and nano„emulsions containing cinnamaldehyde (CM). The nano„emulsions’/emulsions’ antimicrobial performance against two common foodborne pathogens Escherichia coli O157:H7 and Listeria monocytogenes was also compared. Two emulsifier concentrations (0.5% w/w and 1% w/w) and two homogenizing pressures (62.05 MPa and 124.10 MPa) were compared for emulsions droplet stability during storage for 46 days at 4°C, 25°C, and 37°C. Surfactin, FA-glu, and TLA resulted in formation of nanoemulsions at both concentrations, but lecithin did not. Droplet sizes did not change significantly during 38 days at stored temperatures for surfactin- and TLA- stabilized nano„emulsions. However, FA-glu and lecithin stabilized emulsions coalesced after Day 13 at 37°C; also, FA-glu stabilized emulsion thickened on the 38th day at 4°C. The incorporation of CM in nanoemulsions or emulsions did not lower the minimum inhibitory concentration (MIC) for two bacteria tested in broths. However, the CM nanoemulsions and emulsions showed enhanced effects in inhibiting bacterial growths at concentrations lower than MICs compared to non-emulfied CM, with more inhibition from nanoemulsions.

Kurzfassung

Zwei neuartige Biotenside (Surfactin und seine Variante Fettacylglutaminsäure (FA-Glu)) wurden mit zwei handelsüblichen Emulgatoren (Lecithin und einer Mischung aus Tween 80 und Laurinarginat (TLA)) hinsichtlich der Bildung und Stabilität von Zimt-aldehyd-(CM)-haltigen Emulsionen und Nanoemulsionen, verglichen. Die antimikrobielle Wirkung der Nanoemulsionen/Emulsionen gegen zwei verbreitete Lebensmittelpathogene, Escherichia coli O157:H7 und Listeria monocytogenes, wurde ebenfalls untersucht. Während der 46-tägigen Lagerung bei 4°C, 25°C und 37°C wurde die Tröpfchenstabilität der Emulsionen bei zwei Emulgatorenkonzentrationen (0,5 Gew.-% und 1 Gew.-%) und zwei Homogenisierungsdrücken (62,05 MPa und 124,10 MPa) bestimmt bzw. verglichen. Bei den beiden Konzentrationen bildeten sich mit Surfactin, FA-Glu und TLA Nanoemulsionen, mit Lecithin jedoch nicht. Die Tröpfchengrößen der mit Tensid- bzw. TLA-stabilisierten Nanoemulsionen veränderten sich während der 38-tägigen Lagerung bei den untersuchten Temperaturen nicht signifikant. Die mit FA-Glu und Lecithin stabilisierten, bei 37°C gelagerten Emulsionen koaleszierten jedoch nach dem 13. Tag der Lagerung; die bei 4°C mit FAglu-stabilisierte Emulsion verdickte sich am 38. Lagertag. Der Einbau von Zimtaldehyd in die Nanoemulsionen bzw. Emulsionen senkte die minimale Hemmkonzentration (MHK) für die zwei getesteten Bakterienkulturen nicht. Jedoch zeigten die CM-enthaltenen Emulsionen bzw. Nanoemulsionen im Vergleich zu den (Nano-)Emulsionen ohne CM eine stärkere Hemmung des Bakterienwachstums bei Konzentrationen, die niedriger als die MHK waren, wobei die Hemmung in den Nanoemulsionen stärker war.


Prof. Dr. Buddhi P. Lamsal, Department of Food Science and Human Nutrition Iowa State University, 2312 Science Building, Iowa State University, Ames, IA 20010, USA, Tel.: +1(515)294-8681, E-Mail:

Dr. Kangzi Ren was born in August 1989. She obtained her master degree in food science from University of Missouri, Columbia. Later she earned her PhD in food science in 2018 from Iowa State University. She is now working as a research scientist in Eurofins Scientific.

Dr. Buddhi Lamsal completed his postdoctoral research in food science at Iowa State University in 2006 after completing PhD from University of Wisconsin-Madison in 2004. He was a Research Assistant Professor at Kansas State University from 2006–2008. He started to work as an assistant professor in 2008 and became an associate professor in 2014 in Food Engineering and Bioprocessing at the Department of Food Science and Human Nutrition at Iowa State University.

Dr. Mendonca obtained his B.S in Food Technology and Microbiology from Iowa State University (ISU) in 1985. Then he obtained a master degree at Food Technology Department in ISU in 1987 and earned his PhD degree at Food Science & Technology with a minor in Microbiology in ISU in 1992. He worked as a post-doctoral scholar at Department of Food Science in The Pennsylvania State University from 1992–1994 and worked as a food safety scientist and adjunct assistant professor in North Carolina A&T State University from 1994–1998. He became an assistant professor at the Food Science and Human Nutrition Department in 1998 and promoted to an associate professor in 2004.


References

1. Senate, U.S. US.: Senate Committee on Agriculture Nutrition and Forestry. Energy Title (Title K) of the Farm Security and Rural Investment Act of 2002. (2006). Available at https://www.congress.gov/107/plaws/publ171/PLAW-107publ171.pdf. Accessed on July 14th 2019.Suche in Google Scholar

2. Banat, I. M., Franzetti, A., Gandolfi, I., Bestetti, G., Martinotti, M. G., Fracchia, L. and Marchant, R.: Microbial biosurfactants production, applications and future potential, Applied microbiology and biotechnology.87 (87) (2010), 427444. PMid:20424836; 10.1007/s00253-010-2589-0Suche in Google Scholar

3. Banat, I. M., Makkar, R. S. and Cameotra, S. S.: Potential commercial applications of microbial surfactants, Applied microbiology and biotechnology.53 (53) (2000), 495508. PMid:10855707; 10.1007/s002530051648Suche in Google Scholar

4. Ren, K. and Lamsal, B. P.: Synthesis of some glucose-fatty acid esters by lipase from Candida antarctica and their emulsion functions, Food chemistry.214 (2017), 556563. PMid:27507510; 10.1016/j.foodchem.2016.07.031Suche in Google Scholar

5. Reznik, G. O., Vishwanath, P., Pynn, M. A., Sitnik, J. M., Todd, J. J., Wu, J. and Haskell, R. F.: Use of sustainable chemistry to produce an acyl amino acid surfactant, Applied microbiology and biotechnology.86 (86) (2010), 13871397. PMid:20094712; 10.1007/s00253-009-2431-8Suche in Google Scholar

6. Adelhorst, K., Bjokling, F., Godtfredsen, S. E. and Kirk, O.: Enzyme catalysed preparation of 6-O-acylglucopyranosides, Synthesis. (1990) 112115. 10.1055/s-1990-26802Suche in Google Scholar

7. Arcos, J., Bernabe, M. and Otero, C.: Quantitative enzymatic production of 6-O-acylglucose esters, Biotechnology and Bioengineering.57 (57) (1990), 505509. 10.1002/(SICI)1097-0290(19980305)Suche in Google Scholar

8. Degn, P., Pedersen, L. H. and Zimmermann, W.: Lipase-catalysed synthesis of glucose fatty acid esters in tert-butanol, Biotechnology letters.21 (21) (1999), 275280. 10.1023/A:1005439801354Suche in Google Scholar

9. Hayes, D. G.: Biobased surfactants: overview and industrial state-of-the-art. In D. G.Hayes, & Kitamoto, S. D. D. (Eds.), Biobased surfactants and detergents: synthesis, properties and applications. AOCS Press, Urbana, IL (2009) (pp. 35). 10.1016/B978-0-12-812705-6.00001-0Suche in Google Scholar

10. Bustamante, M., Duran, N. and Diez, M.: Biosurfactants are useful tools for the bioremediation of contaminated soil: a review, Journal of soil science and plant nutrition.12 (12) (2012), 667687. 10.4067/S0718-95162012005000024 Suche in Google Scholar

11. Rivardo, F., Turner, R., Allegrone, G., Ceri, H. and Martinotti, M.: Anti-adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens, Applied, Appliedpplied microbiology and biotechnology.83 (83) (2009), 541553. PMid:19343338; 10.1007/s00253-009-1987-7Suche in Google Scholar PubMed

12. Sriram, M. I., Kalishwaralal, K.Deepak, V., Gracerosepat, R., Srisakthi, K. and Gurunathan, S.: Biofilm inhibition and antimicrobial action of lipopeptide biosurfactant produced by heavy metal tolerant strain Bacillus cereus NK1, Colloids, Colloidsolloids and Surfaces B: Biointerfaces.85 (85) (2011), 174181. PMid:21458961; 10.1016/j.colsurfb.2011.02.026Suche in Google Scholar PubMed

13. Chen, Y., Nummer, B. and Walsh, M.: Antilisterial activity of lactose monolaurate in milk, drinkable yogurt and cottage cheese, Letters in applied microbiology.58 (58) (2014), 156162. PMid:24117896; 10.1111/lam.12169Suche in Google Scholar PubMed

14. Habulin, M., Šabeder, S. and Knez, Ž.: Enzymatic synthesis of sugar fatty acid esters in organic solvent and in supercritical carbon dioxide and their antimicrobial activity, The, Thehe Journal of Supercritical Fluids.45 (45) (2008), 338345. 10.1016/j.supflu.2008.01.002Suche in Google Scholar

15. Zhao, H., Shao, D., Jiang, C., Shi, J., Li, Q., Huang, Q. and Jin, M.: Biological activity of lipopeptides from Bacillus, Applied microbiology and biotechnology.101 (101) (2017), 59515960. PMid:28685194; 10.1007/s00253-017-8396-0Suche in Google Scholar PubMed

16. Whang, L. M., Liu, P. W. G., Ma, C. C. and Cheng, S. S.: Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil, Journal, Journalournal of hazardous materials.151 (151) (2008), 155163. PMid:17614195; 10.1016/j.jhazmat.2007.05.063Suche in Google Scholar PubMed

17. Volkering, F., Breure, A. and Rulkens, W.: Microbiological aspects of surfactant use for biological soil remediation, Biodegradation.8 (8) (1997), 401417. PMid:15765586; 10.1023/A:1008291130109Suche in Google Scholar

18. Hathcox, A. and Beuchat, L.: Inhibitory effects of sucrose fatty acid esters, alone and in combination with ethylenediaminetetraacetic acid and other organic acids, on viability of Escherichia coliO157: H7, Food, Foodood microbiology.13 (13) (1996), 213225. 10.1006/fmic.1996.0027Suche in Google Scholar

19. US CFR, Code of Federal Regulations, Title 21, Chapter 1, Part 101 Food Labeling. Sec. 101.22 Foods; labelling of spices, flavorings, colorings and chemical preservatives. (2011); Avavilable at: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=101.22. Accessed July 13th 2019.Suche in Google Scholar

20. AsioliD., Aschemann-Witzel, J., CaputoV., VecchioR., AnnunziataA., Næs, T. and VarelaP.: Making sense of the “clean label” trends: A review of consumer food choice behavior and discussion of industry implications, Food, Foodood Research International.99 (2017), 5871. PMid:28784520; 10.1016/j.foodres.2017.07.022Suche in Google Scholar PubMed

21. Ribeiro-Santos, R., Andrade, M., Madella, D., Martinazzo, A. P., Moura, L. d. A. G., de Melo, N. R. and Sanches-Silva, A.: Revisiting an ancient spice with medicinal purposes: Cinnamon, Trends in Food science & Technology.62 (2017) 154169. 10.1016/j.tifs.2017.02.011Suche in Google Scholar

22. Jantan, I. b., Karim Moharam, B. A., Santhanam, J. and Jamal, J. A.: Correlation between chemical composition and antifungal activity of the essential oils of eight Cinnamomum species, Pharmaceutical, Pharmaceuticalharmaceutical Biology.46 (46) (2008), 406412. 10.1080/13880200802055859Suche in Google Scholar

23. Shan, B., Cai, Y.-Z., Brooks, J. D. and Corke, H.: Antibacterial properties and major bioactive components of cinnamon stick (Cinnamomum burmannii): activity against foodborne pathogenic bacteria, Journal, Journalournal of Agricultural and Food Chemistry.55 (55) (2007), 54845490. PMid:17567030; 10.1021/jf070424dSuche in Google Scholar PubMed

24. Chang, Y., McLandsborough, L. and McClements, D. J.: Fabrication, stability and efficacy of dual-component antimicrobial nanoemulsions: essential oil (thyme oil) and cationic surfactant (lauric arginate), Food, Foodood chemistry.172 (2015), 298304. PMid:25442557; 10.1016/j.foodchem.2014.09.081Suche in Google Scholar PubMed

25. El Kadri, H., Devanthi, P. V. P., Overton, T. W. and Gkatzionis, K.: Do oil-in-water (O/W) nano-emulsions have an effect on survival and growth of bacteria?Food Research International.101 (2017), 114128. PMid:28941674; 10.1016/j.foodres.2017.08.064Suche in Google Scholar PubMed

26. Terjung, N., Löffler, M., Gibis, M., Hinrichs, J. and Weiss, J.: Influence of droplet size on the efficacy of oil-in-water emulsions loaded with phenolic antimicrobials, Food & function.3 (3) (2012), 290301. PMid:22183117; 10.1039/c2fo10198jSuche in Google Scholar PubMed

27. Wilkinson, S. M.: The effect of lecithin on inactivation by eugenol of Escherichia coli O157: H7. Master Thesis. University of Tennessee, Knoxville. (2015); „Available at: https://trace.tennessee.edu/cgi/viewcontent.cgi?article=4612&context=utk_gradthes. Accessed on July 14th 2019.Suche in Google Scholar

28. Topuz, O. K., Özvural, E. B., Zhao, Q., Huang, Q., Chikindas, M. and Gölükçü, M.: Physical and antimicrobial properties of anise oil loaded nanoemulsions on the survival of foodborne pathogens, Food, Foodood chemistry.203 (2016), 117123. PMid:26948596; 10.1016/j.foodchem.2016.02.051Suche in Google Scholar PubMed

29. Pestana, J. M., Gennari, A., Monteiro, B. W., Lehn, D. N. and de Souza, C. F. V.: Effects of Pasteurization and Ultra-High Temperature Processes on Proximate Composition and Fatty Acid Profile in Bovine Milk, American, Americanmerican Journal of Food Technology.10 (10) (2015), 265272. 10.3923/ajft.2015.265.272Suche in Google Scholar

30. Chen, H. L., Lee, Y. S., Wei, Y. H. and Juang, R. S.: Purification of surfactin in pretreated fermentation broths by adsorptive removal of impurities, Biochemical Engineering Journal.40 (40) (2008), 452459. 10.1016/j.bej.2008.01.020Suche in Google Scholar

31. Witayaudom, P. and Klinkesorn, U.: Effect of surfactant concentration and solidification temperature on the characteristics and stability of nanostructured lipid carrier (NLC) prepared from rambutan (Nephelium lappaceum L.) kernel fat, Journal, Journalournal of Colloid and Interface Science.505 (2017), 10821092. PMid:28697547; 10.1016/j.jcis.2017.07.008Suche in Google Scholar PubMed

32. Huang, X., Lu, Z., Bie, X., , F., Zhao, H. and Yang, S.: Optimization of inactivation of endospores of Bacillus cereus by antimicrobial lipopeptides from Bacillus subtilis fmbj strains using a response surface method, Applied, Appliedpplied microbiology and biotechnology.74 (74) (2007), 454461. PMid:17043814; 10.1007/s00253-006-0674-1Suche in Google Scholar PubMed

33. Huang, X., Wei, Z., Zhao, G., Gao, X., Yang, S. and Cui, Y.: Optimization of sterilization of Escherichia coli in milk by surfactin and fengycin using a response surface method, Current, Currenturrent microbiology.56 (56) (2008), 376381. PMid:18058172; 10.1007/s00284-007-9066-8Suche in Google Scholar PubMed

34. Yang, Y., Zhao, C., Tian, G., Lu, C., Zhao, S., Bao, Y. and Zheng, J.: Effects of Preheating and Storage Temperatures on Aroma Profile and Physical Properties of Citrus-Oil Emulsions, Journal, Journalournal of Agricultural and Food Chemistry.65 (65) (2017), 77817789. PMid:28820942; 10.1021/acs.jafc.7b03270Suche in Google Scholar

35. McClements, D.: Emulsion formation. In D.McClements (Ed.), Food emulsions principles, practices and techniques (2nd Eds ed). Boca Raton: CRC Press. (2004a) 250265. 10.1201/9781420039436Suche in Google Scholar

36. McClements, D.: Emulsion stability. In D.McClements (Ed.), Food emulsions principles, practices and techniques (2nd Edition ed). Boca Raton: CRC Press. (2004b) 290294. 10.1201/9781420039436Suche in Google Scholar

37. Walstra, P. and Smulder, P. E. A.: Emulsion formation. In Modern Aspects of Emulsion Science, Binks, B.P., Ed., The Royal Society of Chemistry, Cambridge, UK. (1998) Chap. 2. 10.1039/9781847551474Suche in Google Scholar

38. Walstra, P.: Formation of emulsions. In B. P (Ed.), Encyclopedia of emulsion technology, Vol. 1. Basic Theory. New York: Marcel Dekker. (1983). 10.1002/pol.1983.130210820Suche in Google Scholar

39. Desrumaux, A., Loisel, C. and Marcand, J.: April. Performances of a new high pressure homogenizer to make fine food emulsions. In Proceedings of the 8th International Congress on Engineering and Food (ICEF), Puebla, Mexico (2000), 913.Suche in Google Scholar

40. Juttulapa, M., Piriyaprasarth, S., Takeuchi, H. and Sriamornsak, P.: Effect of high-pressure homogenization on stability of emulsions containing zein and pectin, Asian Journal of Pharmaceutical Sciences.12 (12) (2017), 2127. 10.1016/j.ajps.2016.09.004Suche in Google Scholar

41. Bibette, J.: Depletion interactions and fractionated crystallization for polydisperse emulsion purification, Journal of colloid and interface science.147 (147) (1991), 474478. 10.1016/0021-9797(91)90181-7Suche in Google Scholar

42. Bibette, J., Roux, D. and Nallet, F.: Depletion interactions and fluid-solid equilibrium in emulsions, Physical review letters.65 (65) (1990), 2470. PMid:10042556; 10.1103/PhysRevLett.65.2470Suche in Google Scholar

43. Dickinson, E., Hong, S. T. and Yamamoto, Y.: Rheology of heat-set emulsion gels containing β-lactoglobulin and small-molecule surfactants, Netherlands Milk and Dairy Journal.50 (50) (1996), 199207.Suche in Google Scholar

44. McClements, D. J.: Ultrasonic determination of depletion flocculation in oil-in-water emulsions containing a non-ionic surfactant, Colloids, Colloidsolloids and Surfaces A: Physicochemical and Engineering Aspects.90 (90) (1994), 2535. 10.1016/0927-7757(94)02881-8Suche in Google Scholar

45. Hanaor, D., Michelazzi, M., Leonelli, C. and Sorrell, C. C.: The effects of „carboxylic acids on the aqueous disersion and electrophoretic deposition of ZrO 2, Journal of the European Ceramic Society.32 (32) (2012), 235244. 10.1016/j.jeurceramsoc.2011.08.015Suche in Google Scholar

46. Bhattacharjee, S.: DLS and zeta potential – What they are and what they are not?Journal of Controlled Release.235 (2016) 337351. PMid:27297779; 10.1016/j.jconrel.2016.06.017Suche in Google Scholar

47. Celus, M., Salvia-Trujillo, L., Kyomugasho, C., Maes, I., Van Loey, A. M., Grauwet, T. and Hendrickx, M. E.: Structurally modified pectin for targeted lipid antioxidant capacity in linseed/sunflower oil-in-water emulsions, Food, Foodood Chemistry.241 (2018), 8696. PMid:28958563; 10.1016/j.foodchem.2017.08.056Suche in Google Scholar

48. Li, S.: Enhancement of the antimicrobial activity of eugenol and carvacrol against Escherichia coli O157: H7 by lecithin in microbiological media and food. Master Thesis. University of Tennessee, Knoxville. (2011); Available at https://trace.tennessee.edu/cgi/viewcontent.cgi?article=2156&context=utk_gradthes. Accessed on July 14th 2019.Suche in Google Scholar

49. Jackson, M. and Vinogradov, J.: The effect of brine pH, concentration and temperature on zeta potential measured in natural sandstones. Paper presented at the American Geophysical Union Fall Meeting bstracts. San Fran„cisco, USA. (2015) Abstract ID: H11A-1311.Suche in Google Scholar

50. Ishigami, Y., Osman, M., Nakahara, H., Sano, Y., Ishiguro, R. and Matsumoto, M.: Significance of β-sheet formation for micellization and surface adsorption of surfactin, Colloids and Surfaces B: Biointerfaces.4 (4) (1995), 341348. 10.1016/0927-7765(94)01183-6Suche in Google Scholar

51. Li, X., Qin, Y., Liu, C., Jiang, S., Xiong, L. and Sun, Q.: Size-controlled starch nanoparticles prepared by self-assembly with different green surfactant: The effect of electrostatic repulsion or steric hindrance, Food, Foodood chemistry.199 (2016), 356363. PMid:26775982; 10.1016/j.foodchem.2015.12.037Suche in Google Scholar

52. Drapala, K. P., Auty, M. A., Mulvihill, D. M. and O’Mahony, J. A.: Influence of lecithin on the processing stability of model whey protein hydrolysate-based infant formula emulsions, International, Internationalnternational journal of dairy technology.68 (68) (2015), 322333. 10.1111/1471-0307.12256Suche in Google Scholar

53. Colbert, L.: Lecithins tailored to your emulsification needs, Cereal foods world (USA).43 (43) (1998) 686688.Suche in Google Scholar

54. Walstra, P.: Principles of emulsion formation, Chemical Engineering Science.48 (48) (1993), 333349. 10.1016/0009-2509(93)80021-HSuche in Google Scholar

55. Ndlovu, T., Rautenbach, M., Vosloo, J. A., Khan, S. and Khan, W.: Characterisation and antimicrobial activity of biosurfactant extracts produced by Bacillus amyloliquefaciens and Pseudomonas aeruginosa isolated from a wastewater treatment plant, AMB, AMB Express.7 (7) (2017), 108. PMid:28571306; 10.1186/s13568-017-0363-8Suche in Google Scholar PubMed PubMed Central

56. Gao, L., Han, J., Liu, H., Qu, X., Lu, Z. and Bie, X.: Plipastatin and surfactin „coproduction by Bacillus subtilis pB2-L and their effects on microorganisms, Antonie, Antonientonie Van Leeuwenhoek.110 (110) (2017), 10071018. PMid:28477175; 10.1007/s10482-017-0874-ySuche in Google Scholar PubMed

57. Brandt, A. L., Castillo, A., Harris, K. B., Keeton, J. T., Hardin, M. D. and Taylor, T. M.: Inhibition of Listeria monocytogenes by food antimicrobials applied singly and in combination, Journal of Food Science.75 (75) (2010) M557563. PMid:21535610; 10.1111/j.1750-3841.2010.01843.xSuche in Google Scholar PubMed

58. Burt, S. A. and Reinders, R. D.: Antibacterial activity of selected plant essential oils against Escherichia coli O157: H7, Letters in applied microbiology.36 (36) (2003), 162167. PMid:12581376; 10.1046/j.1472-765X.2003.01285.xSuche in Google Scholar

59. Xue, J., Davidson, P. M. and Zhong, Q.: Inhibition of Escherichia coli O157: H7 and Listeria monocytognes growth in milk and cantaloupe juice by thymol nanoemulsions prepared with gelatin and lecithin, Food, Foodood Control.73 (2017), 14991150. 10.1016/j.foodcont.2016.11.015Suche in Google Scholar

Received: 2019-05-07
Accepted: 2019-07-18
Published Online: 2019-10-01
Published in Print: 2019-09-16

© 2019, Carl Hanser Publisher, Munich

Heruntergeladen am 23.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/113.110642/html?lang=de
Button zum nach oben scrollen