Structures and Properties of Sophorolipids in Dependence of Microbial Strain, Lipid Substrate and Post-Modification
-
Timo Bollmann
Abstract
Starmerella bombicola and Candida kuoi are known to secrete structurally divergent sophorolipid type glycolipids (SLs) under nitrogen limitation. In the present work SLs were produced in titers of 3.9–78.6 g L−1 with the two yeast strains utilizing stearic, oleic and linoleic acid as substrates. HPLC-ELSD combined with HPLC-MS and NMR spectroscopy was used for qualitative and quantitative analysis of the SL mixtures. While S. bombicola almost exclusively produced lactonic diacetylated SLs with a preference for subterminal fatty acid hydroxylation, C. kuoi synthesized diacetylated, terminally hydroxylated open chain SLs with up to 25% of dimeric and trimeric products. Surface tension measurements showed a higher surface and interface activity of the lactonic products from S. bombicola in comparison to open chain C. kuoi based SLs. The lowest CMC of 5.4 mg L−1 and minimum surface tension at the CMC of 35.9 mN m−1 were obtained for the stearic acid based lactones. Similar tendencies were observed in interfacial tension analysis with 3.6 mN m−1 for oleic acid based lactonic SLs at the interface water/paraffin oil in comparison to 9.4 mN m−1 for the corresponding open-chain SL. The acidic C. kuoi SL mixtures directly exhibited foaming properties whereas the S. bombicola SLs needed alkaline deacetylation and ring opening to display foaming comparable to that of the structurally related alkyl polyglycosides.
Kurzfassung
Starmerella bombicola und Candida kuoi sekretieren strukturell divergente Glycolipide mit Sophorolipid-(SL)-Struktur unter Stickstofflimitierung. In der vorliegenden Arbeit wurden Sophorolipide mit zwei Hefestämmen und Stearin-, Öl- und Linolsäure als Substrate in Ausbeuten von 3.9–78.6 g L−1 hergestellt. HPLC-ELSD-Quantifizierung in Kombination mit HPLC-MS und NMR-Spektroskopie wurde zur Analyse der SL-Mischungen eingesetzt. S. bombicola produzierte bevorzugt subterminal hydroxylierte, lactonische Sophorolipide, während C. kuoi offenkettige Sophorolipide mit terminal hydroxylierten Fettsäuren und einem Anteil an dimeren und trimeren Produkten von bis zu 25% synthetisierte. Oberflächenspannungsmessungen in Wasser zeigten niedrigere Werte für die lactonischen Produkte aus S. bombicola im Vergleich zu den offenkettigen C. kuoi-SLs. Die niedrigsten Werte für CMC und Oberflächenspannung von 5.4 mg L−1 und 35.9 mN m−1 wurden für die Stearinsäure-basierten Lactone erhalten. Ähnliche Tendenzen zeigten sich bei Untersuchungen an der Grenzfläche Wasser/Paraffinöl mit 3.6 mN m−1 für die Lactone auf Ölsäurebasis und 9.4 mN m−1 für die korrespondierenden offenkettigen SL. Die sauren C. kuoi-SL-Mischungen zeigten sofort Schaumbildung, wohingegen die S. bombicola-SLs erst nach alkalischer Deacetylierung und Ringöffnung ein zu den strukturell verwandten Alkylpolyglykosiden vergleichbares Schaumvermögen aufwiesen.
References
1. Marktanalyse Nachwachsende Rohstoffe; Schriftenreihe Nachwachsende Rohstoffe 2014, Band 34 (2014), Herausgeber FNR (ISBN 978-3-942147-18-7), (https://fnr.de/marktanalyse/marktanalyse.pdf).Suche in Google Scholar
2. Ivankovic, T. and Hrenovic, J.: Surfactants in the environment, Arch. Ind. Hyg. Toxicol.61 (2010) 95–110. PMid:20338873; 10.2478/10004-1254-61-2010-1943Suche in Google Scholar PubMed
3. Marchant, R. and Banat, I. M.: Microbial biosurfactants: challenges and opportunities for future exploitation, Trends Biotechnol.30 (2012) 558–65. PMid:22901730; 10.1016/j.tibtech.2012.07.003Suche in Google Scholar PubMed
4. Geys, R., Soetaert, W. and Van Bogaert, I.: Biotechnological opportunities in biosurfactant production, Curr. Opin. Biotechnol.30 (2014) 66–72. PMid:24995572; 10.1016/j.copbio.2014.06.002Suche in Google Scholar PubMed
5. Schörken, U., Barbe, S., Hahn, T. and Zibek, S.: Biotechnological routes towards bio-based surfactants: State of the art and future challenges, SOFW-Journal (English edition)05 (2017) 18–30.Suche in Google Scholar
6. Tulloch, A. P. and Spencer, J. F. T.: Structure and reactions of lactonic and acidic sophorosides of 17-hydroxyoctadecanoic acid, Can. J. Chem.46 (1968) 1523–1528. 10.1139/v68-551Suche in Google Scholar
7. Otto, R. T., Daniel, H. J., Pekin, G., Müller-Decker, K., Fürstenberger, G., Reuss, M., and Syldatk, C.: Production of sophorolipids from whey, Appl. Microbiol. Biotechnol.52 (1999) 495–501. PMid:10570796; 10.1007/s002530051551Suche in Google Scholar PubMed
8. Konishi, M., Fukuoka, T., Morita, T., Imura, T. and Kitamoto, D.: Production of New Types of Sophorolipids by Candida batistae, J Oleo Sci57 (2008) 359–369. PMid:18469499; 10.5650/jos.57.359Suche in Google Scholar PubMed
9. Kurtzman, C. P., Price, N. P. J., Ray, K. J. and Kuo, T. M.: Production of sophorolipid biosurfactants by multiple species of the Starmerella (Candida) bombicola yeast clade, FEMS, FEMS Microbiol Lett311 (2010) 140–1466. PMid:20738402; 10.1111/j.1574-6968.2010.02082.xSuche in Google Scholar PubMed
10. Price, N. P. J., Ray, K. J., Vermillion, K. E., Dunlap, C. A. and Kurtzman, C. P.: Structural characterization of novel sophorolipid biosurfactants from a newly identified species of Candida yeast, Carbohydr, Carbohydrarbohydr. Res.348 (2012) 33–41. PMid:22197069; 10.1016/j.carres.2011.07.016Suche in Google Scholar PubMed
11. Ashby, R. D., Solaiman, D. K. Y. and Foglia, T. A.: Property control of sophorolipids: influence of fatty acid substrate and blending, Biotechnol Lett30 (2008) 1093–1100. PMid:18264681; 10.1007/s10529-008-9653-1Suche in Google Scholar PubMed
12. Delbeke, E. I. P., Everaert, J., Uitterhaegen, E., Verweire, S., Verlee, A., Talou, T., Soetaert, W., Van Bogaert, I. N. A. and Stevens, C. V.: Petroselinic acid purification and its use for the fermentation of new sophorolipids, AMB Expr.6 (2016) 28. PMid:27033544; 10.1186/s13568-016-0199-7Suche in Google Scholar PubMed PubMed Central
13. Hirata, Y., Ryu, M., Igarashi, K., Nagatsuka, A., Furuta, T., Kanaya, S. and Sugiura, M.: Natural Synergism of Acid and Lactone Type Mixed Sophorolipids in Interfacial Activities and Cytotoxicities, J. Oleo Sci.58 (2009) 565–572. PMid:19844071; 10.5650/jos.58.565Suche in Google Scholar PubMed
14. Daverey, A. and Pakshirajan, K.: Production, characterization and properties of sophorolipids from the yeast Candida bombicola using a low-cost fermentative medium, Appl, Applppl. Biochem. Biotech.158 (2009) 663–674. PMid:19082764; 10.1007/s12010-008-8449-zSuche in Google Scholar PubMed
15. Hirata, Y., Ryu, M., OdaY., Igarashi, K., Nagatsuka, A., and Furuta, T.: Novel characteristics of sophorolipids, yeast glycolipid biosurfactants, as biodegradable low-foaming surfactants, J, J. Biosci. Bioeng108 (2009) 142–146. PMid:19619862; 10.1016/j.jbiosc.2009.03.012Suche in Google Scholar PubMed
16. Joshi-Navare, K., Khanvilkar, P. and Prabhune, A.: Jatropha oil derived sophorolipids: Production and characterization as laundry detergent additive, Biochem. Res. Int. vol. 2013 (2013). PMid:24455261; 10.1155/2013/169797Suche in Google Scholar PubMed PubMed Central
17. Morya, V. K., Park, J. H., Kim, T. J. and Kim, E. K.: Production and characterization of low molecular weight sophorolipid under fed-batch culture, Biores. Technol.143 (2013) 282–288. PMid:23807367; 10.1016/j.biortech.2013.05.094Suche in Google Scholar PubMed
18. Minucelli, T., Ribeiro-Viana, R. M., Borsato, D., Andrade, G., Cely, M. V. T. and de Oliveira, M. R.: Sophorolipids Production by Candida bombicola ATCC 22214 and its Potential Application in Soil Bioremediation, Waste, Wasteaste Biomass Valorization8 (2017) 743–753. 10.1007/s12649-016-9592-3Suche in Google Scholar
19. Zhang, L., Somasundaran, P., Singh, S. K., Felse, A. P. and Gross, R. A.: Synthesis and interfacial properties of sophorolipid derivatives, Colloids Surf. A: Physicochem. Eng. Aspects240 (2004) 75–82. 10.1016/j.colsurfa.2004.02.016Suche in Google Scholar
20. Develter, D. W. G. and Lauryssen, L. M. L.: Properties and industrial applications of sophorolipids, Eur. J. Lipid Sci. Technol.112 (2010) 628–638. 10.1002/ejlt.200900153Suche in Google Scholar
21. Rau, U., Heckmann, R., Wray, V., and Lang, S.: Enzymatic conversion of a sophorolipid into a glucose lipid, Biotechnol. Lett.21 (1999) 973–977. 10.1023/A:1005665222976Suche in Google Scholar
22. Wu, M., Ding, H., Wang, S., and Xu, S.: Optimizing Conditions for the Purification of Linoleic Acid from Sunflower Oil by Urea Complex Fractionation, J, J. Am. Oil Chem. Soc.85 (2008) 677–684. 10.1007/s11746-008-1245-7 Suche in Google Scholar
23. Cooper, D. G. and Paddock, D. A.: Production of a Biosurfactant from Torulopsis bombicola, Appl. Environ. Microbiol.47 (1984) 173–176.10.1128/aem.47.1.173-176.1984Suche in Google Scholar
24. Davila, A. M., Marchal, R. and Vandecasteele, J. P.: Kinetics and balance of a fermentation free from product inhibition: sophorose lipid production by Candida bombicola, Appl, Applppl. Microbiol. Biotechnol.38 (1992) 6–11. 10.1007/BF00169410Suche in Google Scholar
25. Lever, M.: A new reaction for colorimetric determination of carbohydrates, Anal. Biochem.47 (1972) 273–279. 10.1016/0003-2697(72)90301-6Suche in Google Scholar
26. De Koster, C. G., Heerma, W., Pepermans, H. A. M., Groenewegen, A., Peters, H. and Haverkamp, J.: Tandem Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy Studies of Candida bombicola Sophorolipids and Product Formed on Hydrolysis by Cutinase, Anal, Analnal. Biochem.230 (1995) 135–148. PMid:8585609; 10.1006/abio.1995.1448Suche in Google Scholar PubMed
27. Geys, R.; De Graeve, M.; Lodens, S.; Van Malderen, J.; Lemmens, C.; De Smet, M.; Mincke, S.; Van Bogaert, I. N. A.; Stevens, C.; De Maeseneire, S. L.; Roelants, S. L. K. W.; and Soetaert, W. K. G.: Increasing Uniformity of Biosurfactant Production in Starmerella bombicola via the Expression of Chimeric Cytochrome P450 s, Colloids Interfaces2018, 2, 42. 10.3390/colloids2040042Suche in Google Scholar
28. van Bogaert, I. N., Zhang, J., and Soetaert, W.: Microbial synthesis of sophorolipids, Process Biochem.46 (2011) 821–833. 10.1016/j.procbio.2011.01.010Suche in Google Scholar
29. van Bogaert, I. N., Buyst, D., Martins, J. C., Roelants, S. L. K. W. and Soetaert, W.: Synthesis of bolaform biosurfactants by engineered Starmerella bombicola yeast, Biotechnol. Bioeng.113 (2016) 2644–2651. PMid:27317616; 10.1002/bit.26032Suche in Google Scholar PubMed
30. Ma, X., Li, H. and Song, X.: Surface and biological activity of sophorolipid molecules produced by Wickerhamiella domercqiae var. sophorolipid CGMCC 1576, J, J. Colloid Interface Sci.376 (2012) 165–172. PMid:22459028; 10.1016/j.jcis.2012.03.007Suche in Google Scholar PubMed
31. Chen, M., Dong, C., Penfold, J., Thomas, R. K., Smyth, T. J. P. and Perfumo, A.: Adsorption of sophorolipid biosurfactants on their own and mixed with sodium dodecyl benzene sulfonate at the air/water interface, Langmuir, Langmuirangmuir27 (2011) 8854–8866. PMid:21657229; 10.1021/la201660nSuche in Google Scholar PubMed
32. Daverey, A. and Pakshirajan, K.: Sophorolipids from Candida bombicola using mixed hydrophilic substrates: Production, purification and characterization, Colloids, Colloidsolloids Surf. B79 (2010) 246–257. PMid:20427162; 10.1016/j.colsurfb.2010.04.002Suche in Google Scholar PubMed
33. Koh, A. and Gross, R.: Molecular editing of sophorolipids by esterification of lipid moieties: Effects on interfacial properties at paraffin and synthetic crude oil-water interfaces, Colloids, Colloidsolloids Surf. A507 (2016) 170–181. 10.1016/j.colsurfa.2016.07.084Suche in Google Scholar
© 2019, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Microbial Synthesis
- Production of Non-Toxic Biosurfactant – Surfactin – Through Microbial Fermentation of Biomass Hydrolysates for Industrial and Environmental Applications
- Characterisation Novel Biosurfactants
- Structures and Properties of Sophorolipids in Dependence of Microbial Strain, Lipid Substrate and Post-Modification
- Personal Care/Cleansing
- Amino-Acid Surfactants in Personal Cleansing (Review)
- Toward Milder Personal Care Cleansing Products: Fast ex vivo Screening of Irritating Effects of Surfactants on Skin Using Raman Microscopy
- Textile Surface Modification
- Surface Characterization of Textiles for Optimization of Functional Polymeric Nano-Capsule Attachment
- Enhanced Oil Recovery and Oil-Spill Dispersants
- Pseudo-Gemini Biosurfactants with CO2 Switchability for Enhanced Oil Recovery (EOR)
- Hydrophilic-Lipophilic-Difference (HLD) Guided Formulation of Oil Spill Dispersants with Biobased Surfactants
- Mineral Processing
- Floatability of Chalcopyrite by Glycolipid Biosurfactants as Compared to Traditional Thiol Surfactants
- Antimicrobial Properties
- Stability of Emulsions and Nanoemulsions Stabilized with Biosurfactants, and their Antimicrobial Performance against Escherichia coli O157:H7 and Listeria monocytogenes
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Microbial Synthesis
- Production of Non-Toxic Biosurfactant – Surfactin – Through Microbial Fermentation of Biomass Hydrolysates for Industrial and Environmental Applications
- Characterisation Novel Biosurfactants
- Structures and Properties of Sophorolipids in Dependence of Microbial Strain, Lipid Substrate and Post-Modification
- Personal Care/Cleansing
- Amino-Acid Surfactants in Personal Cleansing (Review)
- Toward Milder Personal Care Cleansing Products: Fast ex vivo Screening of Irritating Effects of Surfactants on Skin Using Raman Microscopy
- Textile Surface Modification
- Surface Characterization of Textiles for Optimization of Functional Polymeric Nano-Capsule Attachment
- Enhanced Oil Recovery and Oil-Spill Dispersants
- Pseudo-Gemini Biosurfactants with CO2 Switchability for Enhanced Oil Recovery (EOR)
- Hydrophilic-Lipophilic-Difference (HLD) Guided Formulation of Oil Spill Dispersants with Biobased Surfactants
- Mineral Processing
- Floatability of Chalcopyrite by Glycolipid Biosurfactants as Compared to Traditional Thiol Surfactants
- Antimicrobial Properties
- Stability of Emulsions and Nanoemulsions Stabilized with Biosurfactants, and their Antimicrobial Performance against Escherichia coli O157:H7 and Listeria monocytogenes