Pseudo-Gemini Biosurfactants with CO2 Switchability for Enhanced Oil Recovery (EOR)
-
Yi Lu
Abstract
Novel biosurfactants with high performance are always needed in the petroleum industry for environmental sustainability. Herein, we developed a series of biosurfactants to enhance the heavy oil recovery from Canadian oil sands. Pseudo-Gemini biosurfactants were designed to be interfacially active and CO2 switchable. The strong interfacial activity of biosurfactants promotes the liberation of heavy oil from solid substrates, which was demonstrated by the liberation visualization cell. On the other hand, the separation of heavy oil from extraction fluid was also facilitated by activating the CO2 switchability of biosurfactants. Since the efficiencies in both the heavy oil liberation and the oil-water separation were improved, the total heavy oil recovery could be significantly enhanced. Therefore, these biosurfactants are believed to be promising in the application of enhanced oil recovery from oil sands ore.
Kurzfassung
In der Erdölindustrie werden immer neue Biotenside benötigt, die sich durch hohe Leistung und ökologische Nachhaltigkeit auszeichnen. Wir haben hier eine Reihe von Biotensiden entwickelt, um die Schwerölgewinnung aus kanadischen Ölsanden zu verbessern. Pseudo-Gemini-Biotenside wurden als grenzflächenaktive und CO2-umschaltbare Verbindungen konzipiert. Die starke Grenzflächenaktivität von Biotensiden fördert die Freisetzung von Schweröl aus festen Substraten, was mit der Freisetzungsvisualisierungszelle gezeigt wurde. Zum anderen wurde auch die Abtrennung von Schweröl aus Extraktionsflüssigkeit durch die Aktivierung der CO2-Schaltbarkeit von Biotensiden erleichtert. Da die Effizienz sowohl bei der Schwerölfreisetzung als auch bei der Öl-Wasser-Trennung verbessert wurde, konnte die gesamte Schwerölgewinnung signifikant verbessert werden. Daher wird angenommen, dass diese Biotenside für die tertiäre Erdölgewinnung aus Ölsanderz vielversprechend sind.
References
1. Masliyah, J., Czarnecki, J. and Xu, Z.: Handbook on theory and practice of bitumen recovery from Athabasca oil sands. Vol. I. Theoretical basis. Kingsley Knowledge Publishing (2010). 10.1002/cjce.21697Suche in Google Scholar
2. Schramm, L. L., StasiukE. N. and MacKinnon, M.: Surfactants in Athabasca oil sands slurry conditioning, flotation recovery, and tailings processes. Cambridge University Press: Cambridge (2000). 10.1017/CBO9780511524844.011Suche in Google Scholar
3. Cui, Z., Wu, L., Sun, M., Jiang, J. and Wang, F.: Synthesis of Dodecyl Lauroyl Benzene Sulfonate and its Application in Enhanced Oil Recovery. Tenside Surfactants Deterg.48 (2011) 408–414. 10.3139/113.110147Suche in Google Scholar
4. Yan, L.-M., Li, Y.-L., Cui, Z.-G., Song, B.-L., Pei, X.-M. and Jiang, J.-Z.: Performances of Guerbet Alcohol Ethoxylates for Surfactant–Polymer Flooding Free of Alkali. Energy Fuels31 (2017) 9319–9327. 10.1021/acs.energyfuels.7b01843Suche in Google Scholar
5. Aitkulov, A., Luo, H., Lu, J. and MohantyK. K.: Alkali–Cosolvent–Polymer Flooding for Viscous Oil Recovery: 2D Evaluation. Energy Fuels31 (2017) 7015–7025. 10.1021/acs.energyfuels.7b00790Suche in Google Scholar
6. Kumar, S., Ahmad, T., ShankhwarS. and MandalA.: Evaluation of Interfacial Properties of Aqueous Solutions of Anionic, Cationic and Non-ionic Surfactants for Application in Enhanced Oil Recovery. Tenside Surfactants Deterg.56 (2019) 138–149. 10.3139/113.110607Suche in Google Scholar
7. Menger, F. M. and KeiperJ. S.: Gemini Surfactants. Angew. Chem. Int. Ed. Engl.39 (2000) 1906–1920. 10.1002/1521-3773(20000602)39:11<1906::AID-ANIE1906>3.0.CO;2-QSuche in Google Scholar
8. Wang, L., Liu, P., Lai, X. J., Wang, J and Li, H. X.: Effect of Spacer on Surface Activity and Foam Properties of Betaine Gemini Surfactants. Tenside Surfactants Deterg.56 (2019) 222–230. 10.3139/113.110615Suche in Google Scholar
9. Sakai, H., Okabe, Y., Tsuchiya, K., Sakai, K. and Abe, M.: Catanionic mixtures forming gemini-like amphiphiles. J Oleo Sci60 (2011) 549–55. PMid:22027019; 10.5650/jos.60.549Suche in Google Scholar
10. Xu, P., Wang, Z., Xu, Z., Hao, J. and SunD.: Highly effective emulsification/demulsification with a CO2-switchable superamphiphile. J. Colloid Interface Sci.480 (2016) 198–204. PMid:27442147; 10.1016/j.jcis.2016.07.023Suche in Google Scholar
11. Schmaljohann, D.: Thermo- and pH-responsive polymers in drug delivery. Adv. Drug Del. Rev.58 (2006) 1655–1670. PMid:17125884; 10.1016/j.addr.2006.09.020Suche in Google Scholar PubMed
12. Kocak, G., Tuncer, C. and ButunV.: pH-Responsive polymers. Polym. Chem.8 (2017) 144–176. 10.1039/c6py01872fSuche in Google Scholar
13. Darabi, A., Jessop, P. G. and CunninghamM. F.: CO2-responsive polymeric materials: synthesis, self-assembly, and functional applications. Chem. Soc. Rev.45 (2016) 4391–436. PMid:27284587; 10.1039/c5cs00873eSuche in Google Scholar PubMed
14. Lu, H. S., Guan, X. Q., Dai, S. S. and HuangZ. Y.: Application of CO2-Triggered Switchable Surfactants to Form Emulsion with Xinjiang Heavy Oil. J. Dispersion Sci. Technol.35 (2014) 655–662. 10.1080/01932691.2013.803254Suche in Google Scholar
15. Lu, H. S., Guan, X. Q., WangB. G. and Huang, Z. Y.: CO2-Switchable Oil/Water Emulsion for Pipeline Transport of Heavy Oil. J. Surfactants Deterg.18 (2015) 773–782. 10.1007/s11743-015-1712-8Suche in Google Scholar
16. Lu, H., Zhou, Z., Jiang, J. and Huang, Z.: Carbon dioxide switchable polymer surfactant copolymerized with 2-(dimethylamino) ethyl methacrylate and butyl methacrylate as a heavy-oil emulsifier. J. Appl. Polym. Sci.132 (2015). 10.1002/app.41307Suche in Google Scholar
17. Roy, D., Cambre, J. N. and SumerlinB. S.: Future perspectives and recent advances in stimuli-responsive materials. Prog. Polym. Sci.35 (2010) 278–301. 10.1016/j.progpolymsci.2009.10.008Suche in Google Scholar
18. Beare-Rogers, J., Dieffenbacher, A. and Holm, J.: Lexicon of lipid nutrition (IUPAC Technical Report). Pure Appl. Chem.73 (2001) 685–744. 10.1351/pac200173040685Suche in Google Scholar
19. Ceschia, E., Harjani, J. R., Liang, C., Ghoshouni, Z., Andrea, T., Brown, R. S. and Jessop, P. G.: Switchable anionic surfactants for the remediation of oil-contaminated sand by soil washing. RSC Adv.4 (2014) 4638–4645. 10.1039/c3ra47158fSuche in Google Scholar
20. Yang, G. and Zhao, J. X.: A rheological study of reverse vesicles formed by oleic acid and diethylenetriamine in cyclohexane. RSC Adv.6 (2016) 48810–48815. 10.1039/c6ra05176fSuche in Google Scholar
21. du Noüy, P. L.: An interfacial tensiometer for universal use. J. Gen. Physiol.7 (1925) 625. PMid:19872165; 10.1085/jgp.7.5.625Suche in Google Scholar PubMed PubMed Central
22. Dean, J. A.: Lange's handbook of chemistry. New york; London: McGraw-Hill, Inc. (1999). 10.1002/jps.2600680645Suche in Google Scholar
23. Young, T.III: An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. (1805) 65–87. 10.1098/rstl.1805.0005Suche in Google Scholar
24. Berg, J. C.: An introduction to interfaces & colloids: the bridge to nanoscience. World Scientific (2010). 10.1142/7579Suche in Google Scholar
25. Srinivasa, S., Flury, C., Afacan, A., Masliyah, J. and Xu, Z.: Study of Bitumen Liberation from Oil Sands Ores by Online Visualization. Energy Fuels26 (2012) 2883–2890. 10.1021/ef300170 mSuche in Google Scholar
26. Chen, T., Lin, F., Primkulov, B., He, L. and Z.Xu: Impact of salinity on warm water-based mineable oil sands processing. Can. J. Chem. Eng.95 (2017) 281–289. 10.1002/cjce.22637Suche in Google Scholar
27. He, L., Zhang, Y., Lin, F., Xu, Z., Li, X. and Sui, H.: Image analysis of heavy oil liberation from host rocks/sands. Can. J. Chem. Eng.93 (2015) 1126–1137. 10.1002/cjce.22136Suche in Google Scholar
28. Zhou, C., Cheng, X, Zhao, O., Liu, S., Liu, C., Wang, J., and Huang, J.: The evolution of self-assemblies in the mixed system of oleic acid-diethylenetriamine based on the transformation of electrostatic interactions and hydrogen bonds. Soft Matter10 (2014) 8023–30. PMid:25159624; 10.1039/c4sm01204fSuche in Google Scholar PubMed
29. Corradini, D.: Handbook of HPLC, Second Edition. Second Edition ed. CRC Press (2010). 10.1002/0470079096Suche in Google Scholar
30. Seidell, A. and Linke, W. F.: Solubilities of inorganic and metal organic compounds: a compilation of quantitative solubility data from the periodical literature. Vol. 2. van Nostrand (1941). 10.1002/ardp.192800154Suche in Google Scholar
31. Zhu, Y., Yan, C., Liu, Q., Masliyah, J. and Xu, Z.: Biodiesel-Assisted Ambient Aqueous Bitumen Extraction (BA3BE) from Athabasca Oil Sands. Energy Fuels (2018). 10.1021/acs.energyfuels.8b00688Suche in Google Scholar
32. He, L., Lin, F., Li, X., Sui, H. and Xu, Z.: Interfacial sciences in unconventional petroleum production: from fundamentals to applications. Chem. Soc. Rev.44 (2015) 5446–94. PMid:25986005; 10.1039/c5cs00102aSuche in Google Scholar PubMed
33. Masliyah, J., Zhou, Z. J., Xu, Z., Czarnecki, J. and Hamza, H.: Understanding water-based bitumen extraction from Athabasca oil sands. Can. J. Chem. Eng.82 (2004) 628–654. 10.1002/cjce.5450820403Suche in Google Scholar
34. He, L., Lin, F., Li, X., Xu, Z. and Sui, H.: Enhancing Bitumen Liberation by Controlling the Interfacial Tension and Viscosity Ratio through Solvent Addition. Energy Fuels28 (2014) 7403–7410. 10.1021/ef501963eSuche in Google Scholar
© 2019, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Microbial Synthesis
- Production of Non-Toxic Biosurfactant – Surfactin – Through Microbial Fermentation of Biomass Hydrolysates for Industrial and Environmental Applications
- Characterisation Novel Biosurfactants
- Structures and Properties of Sophorolipids in Dependence of Microbial Strain, Lipid Substrate and Post-Modification
- Personal Care/Cleansing
- Amino-Acid Surfactants in Personal Cleansing (Review)
- Toward Milder Personal Care Cleansing Products: Fast ex vivo Screening of Irritating Effects of Surfactants on Skin Using Raman Microscopy
- Textile Surface Modification
- Surface Characterization of Textiles for Optimization of Functional Polymeric Nano-Capsule Attachment
- Enhanced Oil Recovery and Oil-Spill Dispersants
- Pseudo-Gemini Biosurfactants with CO2 Switchability for Enhanced Oil Recovery (EOR)
- Hydrophilic-Lipophilic-Difference (HLD) Guided Formulation of Oil Spill Dispersants with Biobased Surfactants
- Mineral Processing
- Floatability of Chalcopyrite by Glycolipid Biosurfactants as Compared to Traditional Thiol Surfactants
- Antimicrobial Properties
- Stability of Emulsions and Nanoemulsions Stabilized with Biosurfactants, and their Antimicrobial Performance against Escherichia coli O157:H7 and Listeria monocytogenes
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Microbial Synthesis
- Production of Non-Toxic Biosurfactant – Surfactin – Through Microbial Fermentation of Biomass Hydrolysates for Industrial and Environmental Applications
- Characterisation Novel Biosurfactants
- Structures and Properties of Sophorolipids in Dependence of Microbial Strain, Lipid Substrate and Post-Modification
- Personal Care/Cleansing
- Amino-Acid Surfactants in Personal Cleansing (Review)
- Toward Milder Personal Care Cleansing Products: Fast ex vivo Screening of Irritating Effects of Surfactants on Skin Using Raman Microscopy
- Textile Surface Modification
- Surface Characterization of Textiles for Optimization of Functional Polymeric Nano-Capsule Attachment
- Enhanced Oil Recovery and Oil-Spill Dispersants
- Pseudo-Gemini Biosurfactants with CO2 Switchability for Enhanced Oil Recovery (EOR)
- Hydrophilic-Lipophilic-Difference (HLD) Guided Formulation of Oil Spill Dispersants with Biobased Surfactants
- Mineral Processing
- Floatability of Chalcopyrite by Glycolipid Biosurfactants as Compared to Traditional Thiol Surfactants
- Antimicrobial Properties
- Stability of Emulsions and Nanoemulsions Stabilized with Biosurfactants, and their Antimicrobial Performance against Escherichia coli O157:H7 and Listeria monocytogenes