Synthesis and Properties of a Novel Gemini Surfactant with Bis-piperidinium
-
Yicheng Xie
, Jiajia Liu , Fan Liu and Hujun Xu
Abstract
A novel cationic Gemini surfactant with bis-piperidinium and benzene ring (C10-CGP) was synthesized by aniline, epichlorohydrin and 1-bromodecane in three steps. The structure of C10-CGP was characterized by mass spectroscopy (MS) and nuclear magnetic resonance (1H NMR). The critical micelle concentration (CMC) and the corresponding surface tension (γCMC) of C10-CGP were measured from 298 K to 313 K and the thermodynamic parameters of the micellization were calculated. The results showed that the critical micelle concentration (CMC) and γCMC were 0.976 × 10−3 mol · L−1 and 28.93 mN · m−1 at 298 K, respectively. With the temperature increase, the CMC increased, the maximum surface adsorption capacity (Γmax) decreased, the γCMC decreased and the minimum molecule area (Amin) increased. The free energy of the system during the micelle formation was negative. When the Gemini surfactant was used as an asphalt emulsifier, C10-CGP exhibited good a emulsifying ability. C10-CGP is a slow-set asphalt emulsifier.
Kurzfassung
Ein neues kationisches Gemini-Tensid mit Bis-Piperidinium- und Benzolring (C10-CGP) wurde mittels Anilin, Epichlorhydrin und 1-Bromdecan in drei Reaktionsschritten synthetisiert. Die Struktur von C10-CGP wurde durch Massenspektroskopie (MS) und Kernmagnetresonanz (1H-NMR) charakterisiert. Die kritische Mizellenkonzentration (CMC) und die entsprechende Oberflächenspannung (γCMC) von C10-CGP wurden zwischen 298 K bis 313 K gemessen und die thermodynamischen Parameter der Mizellenbildung berechnet. Die Ergebnisse zeigten, dass die kritische Mizellenbildungskonzentration (CMC) und die Oberflächenspannung bei der CMC (γCMC) bei 298 K 28.93 mN · m−1 bzw. 0,976 × 10 mol L−1 betrugen. Mit Temperaturerhöhung nahm die CMC zu, die maximale Oberflächenadsorptionskapazität (Γmax) sank, die Oberflächenspannung bei der CMC (γCMC) sank und der minimale Platzbedarf pro Molekül (Amin) nahm zu. Die freie Energie des Systems während der Mizellenbildung war negativ. Bei Verwendung des Gemini-Tensids als Asphalt-Emulgator, zeigte C10-CGP eine gute Emulgierfähigkeit. C10-CGP ist ein langsam wirkender Asphalt-Emulgator.
References
1. Song, L. D. and Rosen, M. J.: Langmuir.12 (1996) 1149–1153. 10.1021/la950508tSearch in Google Scholar
2. Menger, F. M. and Littau, C. A.: J. Am. Chem. Soc.115 (1993) 10083–10090. 10.1021/ja00075a025Search in Google Scholar
3. Menger, F. M. and Littau, C. A.: J. Am. Chem. Soc.113 (1991) 1451–1452. 10.1021/ja00004a077Search in Google Scholar
4. Kunieda, H., Kaneko, M., Feng, J. and Tsubone, K.: J. Oleo Sci.51 (2002) 761–769. 10.5650/jos.51.761Search in Google Scholar
5. Xu, H., Liu, B., Kang, P. and Bao, X.: J. Surfactants Deterg.18 (2015) 297–302. 10.1007/s11743-014-1655-5Search in Google Scholar
6. Shukla, D. and Tyagi, V. K.: J.: Oleo Sci.55 (2006) 381–390. 10.5650/jos.55.381Search in Google Scholar
7. Zana, R.: Advances in Colloid and Interface Science.97 (2002) 205–253. 10.1016/S0001-8686(01)00069-0Search in Google Scholar
8. Menger, F. M. and Keiper, J. S.: Angewandte Chemie.39 (2000) 1906–1920. 10.1002/1521-3773(20000602)39:11<1906::AID-ANIE1906>3.0.CO;2-Search in Google Scholar
9. Song, C. P., Wu, D. Q., Zhang, F. and Liu, P.: Chemical Communications.48 (2012) 2119–2121. 10.1039/c2cc16890aSearch in Google Scholar
10. Zana, R.: Journal of Colloid and interface Science.252 (2002) 259–261. PMid:16290787; 10.1006/jcis.2002.8457Search in Google Scholar
11. Jaeger, D. A.: Langmuir.12 (1996) 1976–1980. 10.1021/la950872sSearch in Google Scholar
12. Shi, L. W. and Xue, Y.: Petroleum asphalt.21 (2007) 122–126. 10.3969/j.issn.1672-3961.2007.03.024Search in Google Scholar
13. Ding, Y. S., Zha, M. and Zhang, J.: Colloids and Surfaces A: Physicochemical and Engineering Aspects.298 (2007) 201–205. 10.1016/j.colsurfa.2oo6.10.063Search in Google Scholar
14. Pierluigi, Q., Guido, V. and Claudia, B.: Journal of Organic Chemistry.68 (2003) 7651–60. PMid:14510538; 10.1021/jo034602nSearch in Google Scholar PubMed
15. Avinash, B. and Sukhprit, S.: Langmuir.25 (2009) 11703–12. PMid:19788223; 10.1021/la901641fSearch in Google Scholar PubMed
16. Qiu, L. G., Xie, A. J. and Shen, Y. H.: Journal of Physical Oceanography.91 (2005) 269–273. 10.1016/j.matchemphys.2004.11.022Search in Google Scholar
17. Caillier, L., Givenchy, E. T. D. and Levy, R.: Journal of Colloid & Interface Science.332 (2009) 201–7. PMid:19144354; 101016/j.jcis.2008.12.038Search in Google Scholar
18. Bhadani, A. and Singh, S.: Langmuir.27 (2011) 14033–44. PMid:22004288; 10.1021/la202201rSearch in Google Scholar PubMed
19. Saif, M. J., Anwar, J. and Munawar, M. A.: Arkivoc Online Journal of Organic Chemistry.43 (2010) 133–145. 10.1016/S0021-9797(03)00694-5Search in Google Scholar PubMed
20. Menger, F. M., Keiper, J. S. and Azov, V.: Langmuir.16 (1999) 2062–2067. 10.1021/la9910576Search in Google Scholar
21. Wahhab, A. A. and Asi, I. M.: Building and Environment.32 (1997) 271–279. 10.1016/S0360-1323(96)00067-4Search in Google Scholar
22. Niazi, Y. and Jalili, M.: Construction and Building Materials.23 (2009) 1338–1343. 10.1016/j.conbuildmat.2008.07.020Search in Google Scholar
23. Huai, C., Shi, L. and Li, N.: Research on Chemical Intermediates.39 (2013) 597–614. 10.1007/s11164-012-0582-1Search in Google Scholar
24. Li, H. P., Zhao, H. and Liao, K.: Energy Sources Part A Recovery Utilization and Environmental Effects.35 (2013) 2285–2293. 10.1080/15567036.2011.551927Search in Google Scholar
25. Li, Z. X. and And, C. C. D.: Langmuir.15 (1999) 4392–4396. 10.1021/la981551uSearch in Google Scholar
26. Nudelman, A.: Journal of Organic Chemistry.21 (1997) 7512–7515. 10.1021/jo971176vSearch in Google Scholar PubMed
27. Xu, H., Chen, D. and Cui, Z.: J. Surfactants Deterg.14 (2011) 167–172. PMid:21841907; 10.1007/s11743-010-1213-8Search in Google Scholar
© 2017, Carl Hanser Publisher, Munich
Articles in the same Issue
- Contents/Inhalt
- Contents
- Detergents/Cleaning
- Application of Glycerin in Liquid Laundry Detergents as an Example of Innovation in the Household Chemicals Industry
- Application
- Characterization of Pyrene Solubilization in Selective Micellar Media of Novel Bio-degradable Natural Surfactant Saponin (Extracted from Soap Nut) and Conventional Surfactant SDBS in Presence and Absence of Common Salt NaCl
- The Effect of pH on the Properties of a Cationic Bitumen Emulsifier
- The Role of Fatty Acids Functional Group in Morinda citrifolia L. on Surface Tension and Diffusion Performance into Ink Particles
- Physical Chemistry
- Effect of Some Vitamins of Group B (B1, B6, B12) on Micellar and Viscosity Properties of Anionic, Cationic and Nonionic Surfactants in Aqueous Solutions
- Phase Behavior and Solubilization of Microemulsions Containing C16mimBr with Different Oil-Water Ratios
- Thermodynamics of Micellization, Interfacial Behavior and Wettability Alteration of Aqueous Solution of Nonionic Surfactants
- Novel Surfactants
- Synthesis and Properties of a Novel Gemini Surfactant with Bis-piperidinium
- Surface Activities and Quantum Chemical Calculations for Different Synthesized Cationic Gemini Surfactants
- Effect of Novel Surfactant on the Growth Kinetics of Cobalt Nanoparticles
Articles in the same Issue
- Contents/Inhalt
- Contents
- Detergents/Cleaning
- Application of Glycerin in Liquid Laundry Detergents as an Example of Innovation in the Household Chemicals Industry
- Application
- Characterization of Pyrene Solubilization in Selective Micellar Media of Novel Bio-degradable Natural Surfactant Saponin (Extracted from Soap Nut) and Conventional Surfactant SDBS in Presence and Absence of Common Salt NaCl
- The Effect of pH on the Properties of a Cationic Bitumen Emulsifier
- The Role of Fatty Acids Functional Group in Morinda citrifolia L. on Surface Tension and Diffusion Performance into Ink Particles
- Physical Chemistry
- Effect of Some Vitamins of Group B (B1, B6, B12) on Micellar and Viscosity Properties of Anionic, Cationic and Nonionic Surfactants in Aqueous Solutions
- Phase Behavior and Solubilization of Microemulsions Containing C16mimBr with Different Oil-Water Ratios
- Thermodynamics of Micellization, Interfacial Behavior and Wettability Alteration of Aqueous Solution of Nonionic Surfactants
- Novel Surfactants
- Synthesis and Properties of a Novel Gemini Surfactant with Bis-piperidinium
- Surface Activities and Quantum Chemical Calculations for Different Synthesized Cationic Gemini Surfactants
- Effect of Novel Surfactant on the Growth Kinetics of Cobalt Nanoparticles