Home Phase Behavior and Solubilization of Microemulsions Containing C16mimBr with Different Oil-Water Ratios
Article
Licensed
Unlicensed Requires Authentication

Phase Behavior and Solubilization of Microemulsions Containing C16mimBr with Different Oil-Water Ratios

  • Lusheng Chen , Jin Pan , Bin Sun , Xiaoyu Zhang , Xiaocui Cui , Jianjun Lu and Jinling Chai
Published/Copyright: September 6, 2017
Become an author with De Gruyter Brill

Abstract

The effects of oil-water ratios (α) on the composition of the balanced interfacial layer and the optimum solubilization of microemulsions C16mimBr/butan-1-ol/oil (octane, decane, dodecane)/5% NaCl solution were investigated. As α increases, the alcohol solubility in water and oil phases (Sa) in the microemulsions also tends to increase. The reason is the relatively high solubility of the alcohol in the oil phase compared to the solubility in water. When α increases, the number of surfactant (nss) and co-surfactant (nas) molecules required to balance the interface layer and the proportion of alcohol in the interfacial layer (AS) increase but the solubilization capacity (SP*) decreases. When the total mass of water and oil is unchanged, the solubilization capacity of the microemulsion systems is lower the higher the relative content of oil is. The effects of different oils, salinity and temperature on the composition of the balanced interfacial layer and the solubilization of microemulsions were also investigated.

Kurzfassung

Die Einflüsse des Öl-Wasser-Verhältnisses (α) auf die Zusammensetzung der Grenzflächenschicht im Gleichgewicht und die optimale Solubilisierung der Mikroemulsionen C16mimBr/Butan-1-ol/Öl (Oktan, Dekan, Dodekan)/5 % NaCl-Lösung wurden untersucht. Mit zunehmendem α, nimmt auch die Alkohollöslichkeit in der Wasser- und Ölphase (Sa) in den Mikroemulsionen zu. Der Grund dafür ist die im Vergleich zur Löslichkeit in Wasser relativ hohe Löslichkeit des Alkohols in der Ölphase. Wenn α zunimmt, nimmt die Anzahl der Tensid (nss)- und Co-Tensid (nas)-Moleküle, die erforderlich sind, um die Grenzschicht und den Alkoholanteil in der Grenzschicht (AS) ins Gleichgewicht zu setzen, zu und die Solubilisierungskapazität (SP*) ab. Bei unveränderter Gesamtmasse von Wasser und Öl ist die Solubilisierungskapazität der Mikroemulsionssysteme niedriger, je höher der relative Gehalt an Öl ist. Die Wirkungen verschiedener Öle, des Salzgehalts und der Temperatur auf die Zusammensetzung der Gleichgewichtsgrenzflächen und die Solubilisierung von Mikroemulsionen wurden ebenfalls untersucht.


*Correspondence address, Mr. Prof. Jinling Chai, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P.R. China, E-Mail:

Lusheng Chen, born in 1961, Shandong Province of China, is a associate professor of chemistry. He graduated from Shandong Normal University in 1982 with a bachelor's degree. Since 1982, he has worked in Shandong Normal University, teaching physical chemistry. Special fields of interest are Physicochemical properties and applications of surfactant aggregates.

Jin Pan, born in 1992, Shanxi Province of China, is an Msc candidate of Shandong Normal University. Her interest of research is physical chemistry of surfactant solutions.

Bin Sun, born in 1992, Shandong Province of China, is an Msc candidate of Shandong Normal University. His interest of research is physical chemistry of surfactant solutions.

Xiaoyu Zhang, born in 1993, Shandong Province of China, is an Msc candidate of Shandong Normal University. Her interest of research is physical chemistry of surfactant solutions.

Xiaocui Cui, born in 1993, Shandong Province of China, is an Msc candidate of Shandong Normal University. Her interest of research is physical chemistry of surfactant solutions.

Jianjun Lu, born in 1962, Shandong Province of China, is a senior experimentalist of chemistry. He graduated from Shandong Normal University in 1982 with a bachelor's degree. Since 1982, he has worked in Shandong Normal University, teaching physical chemistry experiment. Special fields of interest are synthesis, characteristics and application of surfactants.

Jinling Chai, born in 1961, Shandong Province of China, is a chemistry professor. He studied solvent extraction from 1985 to 1988 in Shandong University and got an Msc degree in 1988. In 1988-1999, he worked in department of chemistry, Shandong Normal University, teaching physical chemistry. He was a PhD candidate in Shandong University in 2000–2003 and obtained a PhD degree in 2003. Since 2003, he has worked in Shandong Normal University, researching physical chemistry of surfactant solutions. Special fields of interest are Physicochemical properties and applications of surfactant aggregates.


References

1. Welton, T.: Room-temperature ionic liquids. Solvents for synthesis and catalysis, Chem. Rev.99 (1999) 20712083. PMid:11849019; 10.1021/cr980032tSearch in Google Scholar

2. Ding, S. J., Radosz, M. and Shen, Y. Q.: Ionic liquid catalyst for biphasic atom transfer radical polymerization of methyl methacrylate, Macromolecules38 (2005) 59215928. 10.1021/ma050093aSearch in Google Scholar

3. Martins, M. A. P., Frizzo, C. P., Moreira, D. N., Zanatta, N. and Bonacorso, H. G.: Ionic liquids in heterocyclic synthesis, Chem Rev.108 (2008) 20152050. PMid:18543878; 10.1021/cr078399ySearch in Google Scholar

4. Ao, M. Q., Xu, G. Y., Zhu, Y. Y. and Bai, Y.: Synthesis and properties of ionic liquid-type Gemini imidazolium surfactants, J Colloid Interface Sci.326 (2008) 490495. PMid:18657824; 10.1016/j.jcis.2008.06.048Search in Google Scholar

5. Khadilkar, B. M. and Rebeiro, G. L.: Microwave-assisted synthesis of room-temperature ionic liquid precursor in closed vessel, Org Process Res Dev.6 (2002) 826828. 10.1021/op025551jSearch in Google Scholar

6. Branco, L. C., Rosa, J. N., Ramos, J. J. M. and Afonso, C. A. M.: Preparation and characterization of new room temperature ionic liquids, Chem. Eur. J.8 (2002) 36713677. 10.1002/1521-3765(20020816)8:16<3671::AID-CHEM3671>3.0.CO;2-9Search in Google Scholar

7. Dong, B., Li, N., Zheng, L. Q., Yu, L. and Inoue, T.: Surface adsorption and micelle formation of surface active ionic liquids in aqueous solution, Langmuir23 (2007) 41784182. PMid:17346069; 10.1021/la0633029Search in Google Scholar

8. Galgano, P. D. and Omar, A. E. S.: Micellar properties of surface active ionic liquids: A comparison of 1-hexadecyl-3-methylimidazolium chloride with structurally related cationic surfactants, J. Colloid Interface Sci.345 (2010) 111. 10.1016/j.jcis.2010.01.078Search in Google Scholar

9. Modaressi, A., Sifaoui, H., Mielcarz, M., Domańska, U. and Rogalski, M.: Influence of the molecular structure on the aggregation of imidazolium ionic liquids in aqueous solutions, Colloids Surf. A: Physicochem. Eng. Aspects.302 (2007) 181185. 10.1016/j.colsurfa.2007.02.020Search in Google Scholar

10. Jungnickel, C., Łuczak, J., Ranke, J., Fernández, J. F., Müller, A. and Thöming, J.: Micelle formation of imidazolium ionic liquids in aqueous solution, Colloids Surf. A: Physicochem.Eng. Aspects316 (2008) 27284. 10.1016/j.colsurfa.2007.09.020Search in Google Scholar

11. Blesic, M., Marques, M. H., Plechkova, N. V., Seddon, K. R., Rebelo, L. P. N. and Lopes, A.: Self-aggregation of ionic liquids: micelle formation in aqueous solution, Green Chemistry, 9 (2007), 481490. 10.1039/b615406aSearch in Google Scholar

12. Sun, L., Han, C. Y., Liu, C. S. and Luo, G. X.: Mixed micellization and surface properties of ionic liquids/Triton X-100 mixture system in aqueous media, Tenside Surfactants Detergents50 (2013) 199203. 10.3139/113.110249Search in Google Scholar

13. Benabdellah, A., Belarbi, H., Ilikti, H., Benabdallah, T. and Hatti, M.: Magnetic properties of polyaniline/ZFe2O4 nanocomposites synthesized in CTAB as surfactant and ionic liquid, Tenside Surfactants Detergents52 (2015) 484492. 10.3139/113.110401Search in Google Scholar

14. Fetouhi, B., Benabdellah, A., Belarbi, E. H., Ilikti, H. and Benabdallah, T.: Junction characteristics system based on composite organic semiconductors: polystyrene/polyaniline doped by [BMIM][BF4] ionic liquid, Tenside Surfactants Detergents51 (2014) 541546. 10.3139/113.110341Search in Google Scholar

15. Piekart, J. and Łuczak, J.: Transport properties of microemulsions with ionic liquid apolar domain in a function of ionic liquid content, RSC Adv., 6 (2016) 9260592620. 10.1039/C6RA13061ESearch in Google Scholar

16. Gao, Y. A., Han, S. B., Han, B. X., Li, G. Z., Shen, D., Li, Z. H., Du, J. M., Hou, W. G. and Zhang, G.Y.: TX-100/water/1-butyl-3-methylimidazolium hexafluorophosphate microemulsions, Langmuir21 (2005) 56815684. PMid:15952808; 10.1021/la0500880Search in Google Scholar PubMed

17. Zech, O., Thomaier, S., Bauduin, P., Rück, T., Touraud, D. and Kunz, W.: Microemulsions with an ionic liquid surfactant and room temperature ionic liquids as polar pseudo-phase, Phys. Chem. B113 (2009) 465473. PMid:19099438; 10.1021/jp8061042Search in Google Scholar PubMed

18. Liu, L. P. and Hao, J. C.: Study of ionic liquid microemulsions: ethylammonium nitrate/TritonX-100/cyclohexane, Tenside Surfactants Detergents54 (2017) 214219. 10.3139/113.110500Search in Google Scholar

19. Kunza, W., Zembb, T. and Harrara, A.: Using ionic liquids to formulate microemulsions: Current state of affairs, Curr. Opin. Colloid Interface Sci.17 (2012) 205211. 10.1016/j.cocis.2012.03.002Search in Google Scholar

20. Safavi, A., Maleki, N. and Farjami, F.: Phase behavior and characterization of ionic liquids based microemulsions, Colloids Surf. A: Physicochem. Eng. Aspects355 (2010) 6166. 10.1016/j.colsurfa.2009.11.036Search in Google Scholar

21. Kunieda, H., Nakano, A. and Pes, M. A.: Effect of alkane on the solubilization in microemulsion systems including nonionic surfactant mixtures, Langmuir11 (1995) 33023306. 10.1021/la00009a006Search in Google Scholar

22. Stubenrauch, C., Paeplow, B. and Findenegg, H. G.: Microemulsion supported by octyl monoglucoside and geraniol. 1. The role of the alcohol in the interfacial layer, Langmuir13 (1997) 36523658. 10.1021/la970180zSearch in Google Scholar

23. Kunieda, H. and Aoki, R.: Effect of added salt on the maximum solubilization in an ionic-surfactant microemulsion, Langmuir12 (1996) 57965799. 10.1021/la960472kSearch in Google Scholar

24. Li, X. F. and Kunieda, H.: Catanionic surfactants: microemulsion formation and solubilization, Curr. Opin. Colloid Interface Sci.8 (2003) 327336. 10.1016/S1359-0294(03)00081-5Search in Google Scholar

25. Zheng, Y. J. and Zheng, Y.: Effect of alcohols on phase stability of ionic liquid microemulsions, Tenside Surfactants Detergents52 (2015) 362368. 10.3139/113.110386Search in Google Scholar

26. Chai, J. L., Chai, H. H., Sun, H., Liu, N., Liu, N. N., Zhang, H. M. and Liu, Z. C.: Phase behavior and solubilization of microemulsion systems containing imidazolium type surfactant CnmimBr and butyric acid as cosurfactant, Tenside Surfactants Detergents51 (2014) 421426. 10.3139/113.110324Search in Google Scholar

27. Xu, L., Chai, J. L., Zhu, M. L., Liu, W., Shang, S. S. and Lu, J. J.: Interfacial composition and structural parameters of aqueous NaCl(HCl/NaOH)/CnmimBr/1-pentanol/n-octane microemulsions, Tenside Surfactants Detergents48 (2011) 459465. 10.3139/113.110153Search in Google Scholar

28. Chai, J. L., Sun, B., Chai, Z. Q., Liu, N., Pan, J. and Lu, J. J.: Comparisions of the effects of temperature on the W/O microemulsions formed by alkyl imidazole gemini and imidazole ionic liquids type surfactants, J. Disper. Sci. Technol.38 (2017) 967972. 10.1080/01932691.2016.1216439Search in Google Scholar

29. Tien, T. H. and Bettahar, M.: Effect of the water-oil ratio on brine/surfactant/alcohol/oil systems optimized for soil remediation, J. Mater. Cycles Waste Manag.2 (2000) 109117. 10.1007/s10163-000-0024-9Search in Google Scholar

30. Mitra, R. K. and Paul, B. K.: Effect of temperature and salt on the phase behavior of nonionic and mixed nonionic-ionic microemulsions with fish-tail diagrams, J. Colloid Interface Sci.291 (2005) 550559. PMid:16043189; 10.1016/j.jcis.2005.05.048Search in Google Scholar PubMed

31. Rudolph, E. S. J., Caçao Pedroso, M. A., de Loos, T. W. and de Swaan Arons, J.: Phase behavior of oil + water + nonionic surfactant systems forvarious oil-to-water ratios and the representation by a Landau-Type model, J. Phys. Chem. B101 (1997) 39143918. 10.1021/jp962220ySearch in Google Scholar

32. Kartsev, V. N., Shtykov, S. N., Sineva, A. V., Tsepulin, V. V. and Shtykova, L. S.: Volumetric and transport properties of water-n-octane-sodium dodecyl sulfate-n-pentanol microemulsions, Colloid J.65 (2003) 394397. 10.1023/A:1024279428053Search in Google Scholar

33. Yang, X. D., Li, H. L., Chai, J. L., Chen, J. F. and Lou, A. J.: Phase behavior studies of quaternary systems containing N-lauroyl-N-methylglucamide/alcohol/alkane/water, J. Colloid Interface Sci.320 (2008) 283289. PMid:18243239; 10.1016/j.jcis.2007.12.043Search in Google Scholar PubMed

34. Chai, J. L., Zhao, J. R., Gao, Y. H., Yang, X. D. and Wu, C. J.: Studies on the phase behavior of the microemulsions formed by sodium dodecyl sulfonate, sodium dodecyl sulfate and sodium dodecyl benzene sulfonate with a novel fishlike phase diagram, Colloids Surf. A: Physicochem. Eng. Aspects302 (2007) 3135. 10.1016/j.colsurfa.2007.01.037Search in Google Scholar

35. Qiu, Z. and Texter, J.: Ionic liquids in microemulsions, Current Opinion in Colloid & Interface Science13 (2008) 252262. 10.1016/j.cocis.2007.10.005Search in Google Scholar

36. Bourell, M. and Schechter, R. S.: Microemulsions and Related Systems, Surfactant Science Series, New York: Marcel Dekker Inc. (1988).Search in Google Scholar

37. Aramaki, K., Ozawa, K. and Kunieda, H.: Effect of temperature on the phase behavior of ionic-nonionic microemulsions, J. Colloid Interface Sci.196 (1997) 7478. PMid:9441651; 10.1006/jcis.1997.5183Search in Google Scholar PubMed

Received: 2017-03-02
Accepted: 2017-06-07
Published Online: 2017-09-06
Published in Print: 2017-09-15

© 2017, Carl Hanser Publisher, Munich

Downloaded on 26.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/113.110518/html?lang=en
Scroll to top button