Home Interactions of Cationic, Anionic and Nonionic Surfactants with Cresol Red Dye in Aqueous Solutions: Conductometric, Tensiometric, and Spectroscopic Studies
Article
Licensed
Unlicensed Requires Authentication

Interactions of Cationic, Anionic and Nonionic Surfactants with Cresol Red Dye in Aqueous Solutions: Conductometric, Tensiometric, and Spectroscopic Studies

  • Anwar Ali , Sahar Uzair and Ummer Farooq
Published/Copyright: December 9, 2017
Become an author with De Gruyter Brill

Abstract

The interaction of cresol red (CR) with cetylpyridinium bromide (CPB), sodium dodecyl sulphate (SDS), and Triton X-100 (TX-100) was studied in aqueous solutions employing conductometric, tensiometric, and spectroscopic methods. Various micellar and interfacial parameters were calculated in absence and in presence of CR. The interactions suggest the formation of a CR-CPB adduct, an association of CR with the micelle of TX-100 while no adduct is formed between CR and SDS. Appreciably low critical micelle concentration, CMC value of TX-100 compared with those of CPB and SDS in pure water and drastic reduction of CMC of CPB (about one-twelfth of its value in pure water) than SDS and TX-100 in the presence of CR were observed. Higher negative values of Gibbs free energy of micellization, ΔGm0, for all the three surfactants indicate that micellization process is spontaneous. The values of maximum surface excess concentration, Γmax, and minimum area per molecule, Amin, suggest that in the presence of CR, the air-solution interface is closely packed and the orientation of surfactant molecules is almost perpendicular to the surface. UV-visible spectra suggest the formation of ion-pair complex between the dye CR and the monomers of CPB in the pre-micellar region, while above the CMC a breaking up of the ion-pair complex takes place and the dye is solubilized in the micelles of CPB. In the case of SDS the absorption spectra indicate weak interaction between CR and SDS molecules formation of H-bonding, short range dispersive forces, and hydrophobic interactions between CR and TX-100 molecules in the solution.

Kurzfassung

Die Wechselwirkung von Cresolrot (CR) mit Cetylpyridiniumbromid (CPB), Natriumdodecylsulfat (SDS) und Triton X-100 (TX-100) in wässrigen Lösungen wurde unter Verwendung von konduktometrischen, tensiometrischen und spektroskopischen Methoden untersucht. Verschiedene mizellare Größen und Grenzflächenparameter wurden in Abwesenheit und in Gegenwart von CR berechnet. Die Wechselwirkungen deuten auf die Bildung von CR-CPB-Addukten, eine Anlagerung von CR an die TX-100-Mizellen hin, während kein Addukt zwischen CR und SDS gebildet wird. Die kritische Mizellenkonzentration CMC von TX-100 ist im Vergleich zu CMCs von CPB und SDS in reinem Wasser deutlich niedrig. Eine drastische Reduktion der CMC von CPB (etwa ein Zwölftel seines Wertes in reinem Wasser) als SDS und TX-100 wurde in der Gegenwart von CR beobachtet. Für alle drei Tenside sind die Werte der freien Gibbs-Energie für die Mizellenbildung negativ, was zeigt, dass der Mizellenbildung spontan ist. Die maximale Oberflächenüberschussmenge, Γmax und die minimale Fläche pro Molekül, Amin, deuten darauf hin, dass in Gegenwart von CR die Grenzfläche Luft/Lösung dicht gepackt ist und dass die Orientierung der Tensidmoleküle nahezu senkrecht zur Oberfläche ist. UV-Vis-Spektren deuten auf die Bildung eines Ionenpaar-Komplexes zwischen dem Farbstoff CR und den CPB-Monomeren im vormizellaren Bereich hin, während oberhalb der CMC der Ionenpaar-Komplex aufgebrochen und der Farbstoff in den CPB-Mizellen solubilisiert wird. Die Absorptionsspektren von SDS zeigen eine schwache Wechselwirkung zwischen den CR- und den SDS-Molekülen an, die Bildung von H-Bindungen, Dispersionskräften mit kurzer Reichweite und von hydrophoben Wechselwirkungen zwischen CR- und TX-100-Molekülen in der Lösung an.


*Correspondence address, Dr. Anwar Ali Department of Chemistry, Jamia Millia Islamia (Central University), New Delhi, 110025, India, Tel.: +91-11-26981717, Extn. 3257, Fax: 91-11-26980229, E-mail: ,

Anwar Ali obtained his Ph.D. in physical chemistry in 1978 from the Aligarh Muslim University, India. He joined the Jamia Millia Islamia (Central University) New Delhi, India, in 1984 and is a full professor in the Department of Chemistry. His research interests are centered on thermodynamic and transport studies of interactions in liquid mixtures and in mixtures containing biomolecules in aqueous surfactants/carbohydrates.

Sahar Uzair is pursuing her Ph.D. under the supervision of Prof. Anwar Ali in the Department of Chemistry Jamia Millia Islamia (Central University), India. She is working on dye-surfactant and dye- amino acid interactions in aqueous media.

Ummer Farooq is pursuing his Ph.D. under the supervision of Prof. Anwar Ali in the Department of Chemistry Jamia Millia Islamia (Central University), India. He is working on the study of interactions of ionic liquids with antidepressant drugs and surfactants in aqueous medium.


References

1. Garcia, M. E. D. and Sanz-Medel, A.: Dye-surfactant interactions: a review. Talanta33 (1986) 255264. 10.1016/0039-9140(86)80060-1Search in Google Scholar

2. Alavijeh, M. R., Javadian, S., Gharibi, H., Moadi, M., Bagha, A. R. T. and Shahir, A. A.: Intermolecular interactions between a dye and cationic surfactants: Effects of alkyl chain, head group, and counterion. Colloid Surf. A380 (2011) 119127. 10.1016/j.colsurfa.2011.02.011Search in Google Scholar

3. Ali, A., Uzair, S., Malik, N. and Ali, M.: Study of interaction between cationic surfactants and cresol red dye by electrical conductivity and spectroscopy methods. J. Mol. Liq.196 (2014) 395403. 10.1016/j.molliq.2014.04.013Search in Google Scholar

4. Gohain, B. and Dutta, R. K.: Premicellar and micelle formation behavior of dye surfactant ion pairs in aqueous solutions: Deprotonation of dye in ion pair micelles. J. Colloid Interface Sci.323 (2008) 395402.PMid:18501373; 10.1016/j.jcis.2008.02.063Search in Google Scholar PubMed

5. Ahmadi, F., Daneshmehr, M. A. and Rahimi, M.: The effect of anionic and cationic surfactants on indicators and measurement of dissociation constants with two different methods. Spectrochim. Acta Part A67 (2007) 412419.PMid:16959533; 10.1016/j.saa.2006.07.033Search in Google Scholar PubMed

6. Patil, S. and Agrawal, M. A.: Interactions between dyes and cetyltrimethylammonium bromide. Tenside Surf. Det.48 (2011) 228231. 10.3139/113.110126Search in Google Scholar

7. Akbas, H. and Taner, T.: The effect of electrolytes on the interaction of C.I. Reactive Orange 16-tetradecyltrimethylammonium bromide. Tenside Surf. Det.50 (2013) 8489. 10.3139/113.110235Search in Google Scholar

8. Swati, M., Hase, N. K. and SrivastavaR.: Nanoengineered optical urea biosensor for estimating hemodialysis parameters in spent dialysate. Anal. Chim. Acta676 (2010) 6874.PMid:20800744; 10.1016/j.aca.2010.07.030Search in Google Scholar PubMed

9. Moroi, Y.: Micelles: Theoretical and Applied Aspects, Plenum Press, New York (1992). 10.1007/978-1-4899-0700-4Search in Google Scholar

10. Rosen, M. J.: Surfactant and Interfacial Phenomena, 3rd edn.Wiley-Interscience, Hoboken, New Jersey (2004). 10.1002/0471670561Search in Google Scholar

11. Malik, M. A. and Khan, Z.: Submicellar catalytic effect of cetyltrimethylammonium bromide in the oxidation of ethylene diamine tetraacetic acid by MnO4. Colloids Surf. B64 (2008) 4248.PMid:18289834; 10.1016/j.colsurfb.2008.01.003Search in Google Scholar PubMed

12. Trikalitis, P. N., Rangan, K. K., Bakas, T. and Kanatzidis, M. G.: Single-crystal Mesostructured semiconductors with cubic Ia3d symmetry and ion-exchange properties. J. Am. Chem. Soc.124 (2002) 1225512260. 10.1021/ja026367gSearch in Google Scholar PubMed

13. Qurari, A., Flilissa, A., Boutahala, M. and Ilikti, H.: Removal of cetylpyridinium bromide by adsorption onto maghnite: Application to paper deinking. J. Surfact. Deterg.17 (2014) 785793. 10.1007/s11743-013-1557-ySearch in Google Scholar

14. Moudgil, B. M., Singh, P. K. and Adler, J. J.: Handbook of Applied Surface and Colloid Chemistry, Vol 1. John Wiley & Sons Ltd., West Sussex, England (2002).Search in Google Scholar

15. Abdel-Salam, F. H. and El-Said, A. G.: Bis (diquaternary ammonium) salts: synthesis, effect of spacer on surface activities and aggregation properties of Reactive Red 198 in aqueous surfactants solutions. Tenside Surf. Det.48 (2011) 239249. 10.3139/113.110128Search in Google Scholar

16. Levitzki, A.: Reconstitution of membrane-receptor systems. Biochem. Biophys. Acta822 (1985) 127153. 10.1016/0304-4157(85)90005-XSearch in Google Scholar

17. Mandal, A. B., Ray, S., Biswas, A. M. and Moulik, S. P.: Physicochemical studies on the characterization of Triton X 100 micelles in an aqueous environment and in the presence of additives. J. Phys. Chem.84 (1980) 856869. 10.1021/j100445a012Search in Google Scholar

18. Ali, A., Bhushan, V., Bidhuri, P. and Ansari, S.: Thermodynamics of micellization of Triton X-100 in aqueous glycine: tensiometric and ultrasonic studies. Z. Phys. Chem.227 (2013) 16571670. 10.1524/zpch.2013.0350Search in Google Scholar

19. Shahir, A. A., Javadian, S., Razavizadeh, B. B. M. and Gharibi, H.: Comprehensive study of tartrazine/cationic surfactant interaction. J. Phys. Chem. B115 (2011) 1443514444. 10.1021/jp2051323Search in Google Scholar PubMed

20. Navarro, A. and Sanz, F.: Chemical interaction between nonionic surfactants and an acid dye. J. Colloid Interface Sci.237 (2001) 15.PMid:11334507; 10.1006/jcis.2001.7428Search in Google Scholar PubMed

21. Cimoncis, B. and Span, J.: A study of dye-surfactant interactions. Part 1. Effect of chemical structure of acid dyes and structures on the complex formation. Dyes Pigments36 (1998) 14.Search in Google Scholar

22. Malovikova, A., Hayakawa, K. and Kwak, J. C. T.: Surfactant polyelectrolyte interactions 4. Surfactant chain length dependence of the binding of alkyl pyridinium cations to dextran sulphate. J. Phys. Chem.88 (1984) 19301933. 10.1021/j150654a002Search in Google Scholar

23. Shah, S. W. H., Naeem, K., Naseem, B. and Shah, S. S.: Complex formation study of hemicyanine dyes with sodium dodecyl sulfate by differential spectroscopy. Colloids Surf. A331 (2008) 227231. 10.1016/j.colsurfa.2008.08.009Search in Google Scholar

24. Gohain, B., Saikia, P. M., Sarma, S., BhatS. N. and Dutta, R. K.: Hydrophobicity-induced deprotonation of dye in dye-submicellar surfactant systems. Phys. Chem. Chem. Phys.4 (2002) 26172620. 10.1039/b201274jSearch in Google Scholar

25. Pathama, D., and Sharma, S.: Effect of surfactants and electrolyte on removal and recovery of basic dye by using Ficus Carica cellulosic fibres as biosorbent. Tenside Surf. Det.49 (2012) 306314. 10.3139/113.110196Search in Google Scholar

26. Skerjanc, J., Kogej, K. and Cerar, J.: Equilibrium and transport properties of alkylpyridinium bromides. Langmuir15 (1999) 50235028. 10.1021/la981710Search in Google Scholar

27. Gharibi, H., Palepu, R., Bloor, D. M., Hall, D. G. and Wyn-Jones, E.: Electrochemical studies associated with micellization of cationic surfactants in ethylene glycol. Langmuir8 (1992) 782787. 10.1021/la00039a010Search in Google Scholar

28. Galan, J. J. and Rodrignez, J. R.: Thermodynamic study of the process of micellization of long chain alkyl pyridinium salts in aqueous solution. J. Therm. Anal. Calorim.101 (2010) 359364. 10.1007/s10973-009-0385-9Search in Google Scholar

29. Mata, J., Varade, D. and Bahadur, P.: Aggregation behavior of quaternary salt based cationic surfactants. Thermochim. Acta428 (2005) 147155. 10.1016/j.tca.2004.11.009Search in Google Scholar

30. Benrraon, M., Bales, B. L. and Zana, R.: Effect of the nature of the counterion on the properties of anionic surfactants. 1. CMC, ionization degree at the cmc and aggregation number of micelles of sodium, cesium, tetramethylammonium, tetraethylammonium, tetrapropylammonium, and tetrabutylammonium dodecyl sulfates. J. Phys. Chem. B107 (2003) 1343213440.Search in Google Scholar

31. Ray, A. and Nemethy, G.: Micelle formation by nonionic detergents in water-ethylene glycol mixtures. J. Phys. Chem.75 (1971) 809815.10.1021/j100676a015Search in Google Scholar

32. Bakshi, M. S.: Micelle formation by sodium dodecyl sulfate in water-additive systems. Bull. Chem. Soc. Jpn.69 (1996) 27232729. 10.1246/bcsj.69.2723Search in Google Scholar

33. Evans, D. F. and Ninham, B. W.: Ion binding and the hydrophobic effect. J. Phys. Chem.87 (1983) 50255023. 10.1021/j150642a050Search in Google Scholar

34. Uneo, M., Taso, Y. H., Envans, J. B., EvansD. F.: Tetraethanolammonium counterions in surfactant and classical colloidal systems. J. Solution Chem.21 (1992) 445457. 10.1007/BF00649698Search in Google Scholar

35. Tadros, T. F.: Applied Surfactants- Principles and Applications, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2005). 10.1002/3527604812Search in Google Scholar

36. Krestov, G. A.: Thermodynamic of Solvation, Ellis Horwood Ltd., England (1991).PMid:1911911Search in Google Scholar

37. Chandravanshi, S. and Upadhyay, S. K.: Interaction of quercus infectoria natural dye with cationic and anionic surfactants: Adsorption/micellization of dye. J. Disp. Sci. Technol.34 (2013) 13081315. 10.1080/01932691.2012.743864Search in Google Scholar

38. Faustinoa, C. M. C., Calado, A. R. T. and Garcia-Rio, L.: Dimeric and monomeric surfactants derived from sulfur-containing amino acids. J. Colloid Interface Sci.35 (2010) 472477. 10.1016/j.jcis.2010.08.007Search in Google Scholar PubMed

39. Szymczyk, K., Zdziennicka, A., Jańczuk, B. and Wójcik,W.: The properties of mixtures of two cationic surfactants in water at water/air interface. Colloids Surf. A264 (2005) 147156. 10.1016/j.colsurfa.2005.04.023Search in Google Scholar

40. Sharma, K. S., Hassan, P. A. and Rakshit, A. K.: Surface activity and association behavior of nonaoxyethylene n-dodecylether in aquo amino acid medium: Tensiometry, small-angle neutron scattering, dynamic light scattering and viscosity studies. Colloids Surf. A308 (2007) 100110. 10.1016/j.colsurfa.2007.05.035Search in Google Scholar

41. Yakatan, G. J. and Schulman, S. G.: Electronic spectral study of the ionizations of the naphthalene monosulfonic acids. J. Phys. Chem.76 (1972) 508510. 10.1021/j100648a010Search in Google Scholar

42. Dutt, R. K., Chawdhury, R. and Bhat, S. N.: Effect of association of sulfonephthalein dyes with sodium dodecyl sulfate micelles on their acid–base equilibria. J. Chem. Soc. Faraday Trans.91 (1995) 681686. 10.1039/FT9959100681Search in Google Scholar

43. Modal, S., Doloi, B. and Ghosh, S.: Spectroscopic studies of interaction of safranine T with ionic surfactants. Fluid Phase Equilib.360 (2013) 180187. 10.1016/j.fluid.2013.09.049Search in Google Scholar

44. Drummond, C. J., Grieser, F. and Healy, T. W.: Acid-base equilibria in aqueous micellar solutions. Part 2. Sulfonphthalein indicators. J. Chem. Soc. Faraday, Trans I85 (1898) 537550. 10.1039/F19898500537Search in Google Scholar

45. Das, J. and Ismail, K.: Aggregation, adsorption, and clouding behaviors of TX-100 in formamide. J. Colloid Interface Sci.337 (2009) 227233.PMid:19540507; 10.1016/j.jcis.2009.04.094Search in Google Scholar PubMed

Received: 2015-12-23
Accepted: 2016-05-03
Published Online: 2017-12-09
Published in Print: 2017-07-14

© 2017, Carl Hanser Publisher, Munich

Downloaded on 26.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/113.110509/pdf?lang=en
Scroll to top button