Pt Nanoparticles via Oil-in-Water Microemulsions Stabilized by a Technical Grade Surfactant: An Economical and Ecological Approach
-
Ramona Yvette Genevieve König
Abstract
This study deals with the synthesis of Pt nanoparticles via oil-in-water microemulsions formulated with the technical grade surfactant BIODAC® 510. For this purpose we studied the influence of the Platinum precursor dimethyl(cyclooctadiene)platinum (Pt(COD)Me2) on the phase behavior of the base microemulsion. It was found that the addition of Pt(COD)Me2 has nearly no effect on the phase boundaries even at relatively high concentrations. Small angle X-ray scattering data confirmed that the addition of the metal organyl also does not influence the size of the microemulsion droplets. According to transmission electron microscopy (TEM) the size of the resulting platinum nanoparticles is independent on the amount of Pt(COD)Me2 in the templating microemulsion. This result was rather surprising since it indicates that a greater amount of precursor in the o/w-microemulsion leads to more rather than to larger nanoparticles.
Kurzfassung
In dieser Studie wird systematisch die Synthese von Platin Nanopartikeln in Öl-in-Wasser Mikroemulsionen untersucht. Die Mikroemulsionen sind mit dem technischen Tensid BIODAC® 510 hergestellt worden. Zunächst haben wir den Einfluss des Platin-Präkursors Dimethyl(cyclooctadiene)platin (Pt(COD)Me2) auf das Phasenverhalten der ternären Mikroemulsion bestimmt. Hierbei konnten wir feststellen, dass die Zugabe von Pt(COD)Me2 – auch in relativ hohen Konzentrationen – kaum Einfluss auf das Phasenverhalten der Mikroemulsion hat. Durch Kleinwinkelröntgenstreuung konnten wir bestätigen, dass die Zugabe des Platin Präkursors die Größe der Mikroemulsionstropfen ebenfalls nicht verändert. Aufnahmen mit einem Transmissionselektronenmikroskop (TEM) haben gezeigt, dass die Größe der Nanopartikel nicht von der Menge an Pt-Präkursor in der Templatmikroemulsion abhängt. Dieses Ergebnis war unerwartet und deutet darauf hin, dass eine größere Menge Präkursor zu einer größeren Anzahl Nanopartikel und nicht zu einer Zunahme der Nanopartikelgröße führt.
References
1. Boutonnet, M., Lögdberg, S. and SvenssonE.E.: Recent developments in the application of nanoparticles prepared from w/o microemulsions in heterogeneous catalysis. Curr. Opin. Colloid In.13 (2008) 270–286. 10.1016/j.cocis.2007.10.001Suche in Google Scholar
2. Boutonnet, M., Kizzling, J. and Stenius, P.: The preparation of monodisperse colloidal metal particles from microemulsions. Colloid Surface5 (1982) 209–225. 10.1016/0166-6622(82)80079-6Suche in Google Scholar
3. Magno, L. M., Angelescu, D. G. and Stubenrauch, C.: Phase diagrams of non-ionic microemulsions containing reducing agents and metal salts as bases for the synthesis of bimetallic nanoparticles. Colloids Surf. A348 (2009) 116–123. 10.1016/j.colsurfa.2009.07.002Suche in Google Scholar
4. Magno, L. M., Sigle, W., van Aken, P. A., Angelescu, D. G. and Stubenrauch, C.: Microemulsions as reaction media for the synthesis of bimetallic nanoparticles: size and composition of particles. Chem. Mater.22 (2010) 6263–6271. 10.1021/cm101811gSuche in Google Scholar
5. Magno, L. M., Angelescu, D. G., Sigle, W. and Stubenrauch, C.: Microemulsions as reaction media for the synthesis of Pt nanoparticles. Phys. Chem. Chem. Phys.13 (2011) 3048–3058. 10.1039/C0CP01085ESuche in Google Scholar PubMed
6. Magno, L. M., Sigle, W., van Aken, P. A., Angelescu, D. G. and Stubenrauch, C.: Size control of PtPb intermetallic nanoparticles prepared via microemulsions. Phys. Chem. Chem. Phys.13 (2011) 9134–9136. 10.1039/C1CP20159JSuche in Google Scholar PubMed
7. Capek, I.: Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Adv. Colloid Interface Sci.110 (2004) 49–74. 10.1016/j.cis.2004.02.003Suche in Google Scholar PubMed
8. Parapat, R. Y., Wijaya, M., Schwarze, M., Selve, S., Willinger, M. and Schomäcker, R.: Particle shape optimization by changing from an isotropic to an anisotropic nanostructure: preparation of highly active and stable supported Pt catalysts in microemulsions. Nanoscale5 (2013) 796–805. 10.1039/c2nr32122Suche in Google Scholar
9. Pileni, M. P.: Reverse micelles as microreactors. J. Phys. Chem.97 (1993) 6961–6973;. 10.1021/j100129a008Suche in Google Scholar
10. Arriagada, F. J. and Osseo-Asare, K.: Synthesis of nanosize silica in a nonionic water-in-oil microemulsion: effects of the water/surfactant molar ratio and ammonia concentration. J. Colloid Interface Sci.211 (1999) 210–220. 10.1006/jcis.1998.5985Suche in Google Scholar PubMed
11. Ahmed, J., Ramanujachary, K. V., Lofland, S. E., Furiato, A., Gupta, G., Shivaprasad, S. M. and Ganguli, A. K.: Bimetallic Cu-Ni nanoparticles of varying composition (CuNi3, CuNi, Cu3Ni). Colloids Surf. A331 (2008) 206–212. 10.1016/j.colsurfa.2008.08.007Suche in Google Scholar
12. Malheiro, A. R., Varanda, L. C., Perez, J. and Villillas, H. M.: The aerosol OT + n-butanol + n-heptane + water system: phase behavior, structure characterization, and application to Pt70Fe30 nanoparticle synthesis. Langmuir23 (2007) 11015–11020. 10.1021/la702146qSuche in Google Scholar PubMed
13. Zhang, X. and Chan, K.-Y.: Microemulsion synthesis and electrocatalytic properties of Platinum-Ruthenium nanoparticles. Chem. Mater.15 (2003) 451–459. 10.1021/cm0203868Suche in Google Scholar
14. Nanni, A. and Dei, L.: Ca(OH)2 nanoparticles from W/O microemulsions. Langmuir19 (2003) 933–938. 10.1021/la026428oSuche in Google Scholar
15. Yener, D. O. and Giesche, H.: Synthesis of pure and Manganese-, Nickel-, and Zinc-doped Ferrite particles in water-in-oil microemulsions. J. Am. Ceram. Soc.84 (2001) 1987–1995. 10.1111/j.1151-2916.2001.tb00947.xSuche in Google Scholar
16. Wu, M.-L., Chen, D.-H. and Huang, T.-C.: Preparation of Pd/Pt Bimetallic Nanoparticles in Water/AOT/Isooctane Microemulsions. J. Colloid Interface Sci.243 (2001) 102–108. 10.1006/jcis.2001.7887Suche in Google Scholar
17. Wu, M.-L. and Lai, L.-B.: Synthesis of Pt/Ag bimetallic nanoparticles in water-in-oil microemulsions. Colloids Surf. A244 (2004) 149–157. 10.1016/j.colsurfa.2004.06.027Suche in Google Scholar
18. Yashima, M., Falk, L. K. L., Palmqvist, A. E. C. and Holmberg, K.: Structure and catalytic properties of nanosized alumina supported platinum and palladium particles synthesized by reaction in microemulsion. J. Colloid Interface Sci.268 (2003) 348–356. 10.1016/j.jcis.2003.07.041Suche in Google Scholar PubMed
19. Eastoe, J., Hollamby, M. J. and Hudson, L.: Recent advances in nanoparticle synthesis with reversed micelles. Adv. Colloid. Interface. Sci.128 (2006) 5–15. 10.1016/j.cis.2006.11.009Suche in Google Scholar PubMed
20. Sanchez-Dominguez, M., Boutonnet, M. and Solans, C.: A novel approach to metal and metal oxide nanoparticle synthesis: the oil-in-water microemulsion reaction method. J. Nanopart. Res.11 (2009) 1823–1829. 10.1007/s11051-009-9660-8Suche in Google Scholar
21. Sanchez-Dominguez, M., Liotta, L. F., Di Carlo, G., Pantaleo, G. and Venezia, A. M.: Synthesis of CeO2, ZrO2, Ce0.5Zr0.5O2, and TiO2 nanoparticles by a novel oil-in-water microemulsion reaction method and their use as catalyst support for CO oxidation. Catal. Today158 (2010) 35–43. 10.1016/j.cattod.2010.05.026Suche in Google Scholar
22. Sanchez-Dominguez, M., Koleilat, H., Boutonnet, M. and Solans, C.: Synthesis of Pt Nanoparticles in Oil-in-Water Microemulsions: Phase Behavior and Effect of Formulation Parameters on Nanoparticle Characteristics. J. Disper. Sci. Technol.32 (2011) 1765–1770. 10.1080/01932691.2011.616170Suche in Google Scholar
23. Sanchez-Dominguez, M., Pemartin, K. and Boutonnet, M.: Preparation of inorganic nanoparticles in oil-in-water microemulsions: A soft and versatile approach. Curr. Opin. Colloid In.17 (2012) 297–305. 10.1016/j.cocis.2012.06.007Suche in Google Scholar
24. Pemartin, K., Solans, C., Vidal-Lopez, G. and Sanchez-Dominguez, M.: Synthesis of ZnO and ZnO2 nanoparticles by the oil-in-water microemulsion reaction method. Chem. Lett.41 (2012) 1032–1034. 10.1246/cl.2012.1032Suche in Google Scholar
25. Koenig, R. Y. G., Schlick, C., Sigle, W. and Stubenrauch, C.: Nanoparticles via Oil-in- Water Microemulsions: A solvent-reduced, energy-efficient approach. Zeitschrift für Physikalische Chemie, December 2014. 10.1515/zpch-2014-0548Suche in Google Scholar
26. Strey, R.: Microemulsion microstructure and interfacial curvature. Colloid Polym. Sci.272 (1994) 1005–1019. 10.1007/BF00658900Suche in Google Scholar
27. Sottmann, T. and Stubenrauch, C.: Phase Behavior, Interfacial Tension, and Microstructure of Microemulsions, in: Stubenrauch, C. (ed.), Microemulsions: Background, New Concepts, Applications, Perspectives. John Wiley & Sons, Oxford (2009). 10.1002/9781444305524Suche in Google Scholar
28. Kratky, O.: A Survey, in: Glatter, O. (Ed.), Small Angle X-ray Scattering, (ed.). AP Academic Press (1982).Suche in Google Scholar
29. Kowlgi, K., Lafont, U., Rappolt, M. and Koper, G.: Uniform metal nanoparticles produced at high yield in dense microemulsions. J. Coll. Int Sci.372 (2012) 16–23. 10.1016/j.jcis.2012.01.021Suche in Google Scholar PubMed
© 2015, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Physical Chemistry
- Pt Nanoparticles via Oil-in-Water Microemulsions Stabilized by a Technical Grade Surfactant: An Economical and Ecological Approach
- Research of Binary Surfactant Mixtures Based on α-Sulphonated Fatty Acid Methyl Ester
- Oil/water Interfacial Tension of Shengli Petroleum Sulfonate/α-Olefin or Polyethyleneoxy Ether Sulfonate Binary Systeme
- Kinetic Study of the Formation of Ruhemann's Purple in Micellar and Microemulsion Phases
- Application
- Laboratory Study of Water Shutoff by Activated Heavy Oil for High Temperature and High Salinity Reservoirs
- Electrokinetic Potentials of Cotton Fabrics Dyed and Finished in Presence of LAS and Alkyl Polyglucosides and Dye Transfer Inhibitor
- Experimental Evaluation of Hygienic Conditions in Domestic Dishwashers
- Environmental Chemistry
- Development and Evaluation of an Environmentally Friendly Calcium Carbonate and Calcium Sulfate Scales Inhibitor
- Novel Surfactants
- Synthesis and Properties of Alkyl Dibenzyl Ether Quaternary Ammonium Gemini Surfactant
- Synthesis, Characterization and Antimicrobial Evaluation of Three New Cationic Surfactants
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Physical Chemistry
- Pt Nanoparticles via Oil-in-Water Microemulsions Stabilized by a Technical Grade Surfactant: An Economical and Ecological Approach
- Research of Binary Surfactant Mixtures Based on α-Sulphonated Fatty Acid Methyl Ester
- Oil/water Interfacial Tension of Shengli Petroleum Sulfonate/α-Olefin or Polyethyleneoxy Ether Sulfonate Binary Systeme
- Kinetic Study of the Formation of Ruhemann's Purple in Micellar and Microemulsion Phases
- Application
- Laboratory Study of Water Shutoff by Activated Heavy Oil for High Temperature and High Salinity Reservoirs
- Electrokinetic Potentials of Cotton Fabrics Dyed and Finished in Presence of LAS and Alkyl Polyglucosides and Dye Transfer Inhibitor
- Experimental Evaluation of Hygienic Conditions in Domestic Dishwashers
- Environmental Chemistry
- Development and Evaluation of an Environmentally Friendly Calcium Carbonate and Calcium Sulfate Scales Inhibitor
- Novel Surfactants
- Synthesis and Properties of Alkyl Dibenzyl Ether Quaternary Ammonium Gemini Surfactant
- Synthesis, Characterization and Antimicrobial Evaluation of Three New Cationic Surfactants