Home Kinetic Study of the Formation of Ruhemann's Purple in Micellar and Microemulsion Phases
Article
Licensed
Unlicensed Requires Authentication

Kinetic Study of the Formation of Ruhemann's Purple in Micellar and Microemulsion Phases

  • Hisham J. El-Aila and Khaled M. Elsousy
Published/Copyright: March 21, 2015
Become an author with De Gruyter Brill

Abstract

The reaction kinetics of ninhydrine (Nin) with glycine–glycine dipeptide (Gly) was studied in aqueous solution. The same reaction was studied in micellar solutions of different surfactants such as sodium dioctylsulfosuccinate (AOT) and sodium dodecyl sulfate (SDS). The reaction was also studied in the L2 microemulsion phase of the three systems AOT/heptane/water, SDS/pentanol/heptane/water, CTAB/pentanol/heptane/water. Spectrophotometric measurements were perfomed at 570 nm. The data show that the reaction is first-order with respect to Nin and Gly in all cases. Values of the observed rate constants (kobs) increase with increasing concentration of the surfactant in micellar media. AOT was more promotional than SDS. The reaction rate in the presence of different micelles could be explained using a pseudo-phase kinetic model. Association constants of Nin and Gly with surfactant micelles are reported. Values of kobs for the reaction rates in the microemulsion phases are reported. AOT/heptane L2 microemulsion system has been clearly found as the most promotional among all the other studied systems. Association constants of Nin and Gly with surfactant in microemulsion were obtained. The rate was increased with the temperature in aqueous, micellar and microemulsion phases. The activation parameters ΔH*, ΔS* and ΔG* have also been obtained. The reaction rate in different microemulsion media is slightly increased with the change of oil (heptane > hexane > pentane), while co-surfactants (butanol, pentanol and hexanol) have no effect on kobs values in AOT, CTAB or SDS microemulsion.

Kurzfassung

Die Reaktionskinetik von Ninhydrin (Nin) mit Glycylglycin (Gly) in wässriger Lösung wurde untersucht. Die gleiche Reaktion wurde in mizellaren Lösungen aus unterschiedlichen Tensiden wie Natriumdioctylsulfosuccinat (AOT) und Natriumdodecylsulfat (SDS) studiert. Die Reaktion wurde ebenfalls in der L2-Mikroemulsionsphase der drei Systeme AOT/Heptan/Wasser, SDS/Pentanol/Heptan/Wasser, CTAB/Pentanol/Heptan/Wasser untersucht. Spektrophotometrische Messungen wurden bei 570 nm durchgeführt. Die Daten zeigen, dass es sich in Fällen um eine Reaktion Erster Ordnung handelt. Die Werte der Geschwindigkeitskonstanten (kobs) steigen mit zunehmender Konzentration des Tensids in der mizellaren Phase an. AOT wirkt stärker beschleunigend als SDS. Die Reaktionsgeschwindigkeit in Gegenwart verschiedener Mizellen konnte mittels eines Pseudo-Phasen-Kinetikmodells erklärt werden. Von allen untersuchten Systemen wirkte das AOT/Heptan-L2-Mikroemulsionssystem am stärksten beschleunigend. Die Assoziationskonstanten von Nin und Gly mit den Tensiden in der Mikroemulsion wurden bestimmt. Die Geschwindigkeit stieg mit steigender Temperatur sowohl in wässriger als auch in mizellarer als auch in der Mikroemulsionsphase. Die Aktivierungsparmeter ΔH*, ΔS* und ΔG* wurden ebenfalls bestimmt. Die Rekationsgeschwindigkeit in den Mikroemulsionen stieg leicht mit der homologen Reihe des Öls (Heptan > Hexan > Pentan), wohingegen die Co-Tenside (Butanol, Pentanol und Hexanol) keinen Einfluss auf die Geschwindigkeitskonstante (kobs) in den AOT-, CTAB- oder SDS-Mikroemulsionen hatten.


* Correspondence address, Prof. Hisham J. El-Aila, Chemistry department, Alaqsa University, Gaza, Gaza strip, P.N.A., Tel.: +972082453524, Fax: +97208284548, E-Mail:
**Dr. Khaled M. Elsousy, E-Mail:

Dr. Hesham J. Y. El-Aila born in 1963, studied at Islamic University-Gaza (Palestine), where he obtained his B.Sc. in chemistry in 1986 and at Al-Nagah University-Nablus (Palestine), where he obtained his M.Sc. in physical chemistry in 1989. In 2001 he obtained his Ph.D. in physical chemistry from Ain-Shams University, Cairo (Egypt). He has been Assistant professor in chemistry department at Al-Aqsa University-Gaza (Palestine) up to 2007. In September 2007 he has been Associated Professor in chemistry department at Al-Aqsa University-Gaza (Palestine) up to now.

Dr. Khaled M. El-Sousy born in 1962, studied at Islamic University-Gaza (Palestine), where he obtained his B.Sc. in chemistry in 1985 and his M.Sc. in physical chemistry from Middle East Technical University (Tyrky) in 1988. In 2000 he obtained his Ph.D. in physical chemistry from Ain-Shams University, Cairo (Egypt). Since he has been Assistant professor in chemistry department at Al-Aqsa University-Gaza (Palestine) up to 2007. In September 2007 he has been Associated Professor in chemistry department at Al-Aqsa University-Gaza (Palestine) up to now.


References

1. Pugh, R. J.: Foaming, foam films, antifoaming and defoaming. Adv. Colloid Interface Sci.64 (1996) 67142. 10.1016/0001-8686(95)00280-4Search in Google Scholar

2. Saha, B. and Orvig, C.: Biosorbents for hexavalent chromium elimination from industrial and municipal effluents. Coord. Chem. Rev.254 (2010) 2959. 10.1016/j.ccr.2010.06.005Search in Google Scholar

3. Akram, M., Zaidi, N. H. and Kabir-ud-Din: Effect of Cationic Micelles on the Kinetics of Interaction of [Cr(III)-Gly-Gly]2+ with Ninhydrin. Acta Physico-Chimica Sinica24 (2008) 22072213. 10.1016/S1872-1508(08)60084-4Search in Google Scholar

4. Kabir-ud-Din, Salem, J. K. J., Kumar, S. and Khan, Z.: Effect of cationic surfactants on the addition-elimination type interaction between aspartic acid and ninhydrin. Colloids Surf. A168 (2000) 241250. 10.1016/S09277757(99)00454-9Search in Google Scholar

5. Kabir-ud-Din and Fatma, W.: Role of cationic gemini surfactants toward enhanced ninhydrin-tryptophan reaction. J. Phy. Org. Chem.20 (2007) 440447. 10.1002/poc.1171Search in Google Scholar

6. Kabir-ud-Din, Akram, M. and Khan, Z.: Kinetics and Mechanism of the Reaction of Ninhydrin with Chromium(III)-tryptophan Complex in Absence and Presence of Surfactants. Bioinorg. React. Mech.5 (2003) 112. 10.1515/irm-2003-0101Search in Google Scholar

7. Fernandez, A., Iglesias, E., Rio, L. G. and Leis, J. R.: Chemical Reactivity and Basicity of Amines Modulated by Micellar Solutions. Langmuir11 (1995) 19171924. 10.1021/la00006a017Search in Google Scholar

8. Nadia, Y., El-Sousy, Kh. M., EL-AilaH. J. Y. and Mhesen, F.: Reaction Kinetics of the Heterogenous Decomposition of Hydrogen Peroxide in Microemulsions. Tenside Surf. Det.42 (2005) 368372. 10.3139/113.100279Search in Google Scholar

9. Verma, S. K. and Ghosh, K. K.: Activity, stability and kinetic parameters for α-chymotrypsin catalysed reactions in AOT/isooctane reverse micelles with nonionic and zwitterionic mixed surfactants. J. Chem. Sci.125 (2013) 875882. 10.1007/s12039-013-0434-6Search in Google Scholar

10. Friedman, F.: Applications of the Ninhydrin Reaction for Analysis of Amino Acids, Peptides, and Proteins to Agricultural and Biomedical Sciences. J. Agric. Food Chem.52 (2004) 385406. 10.1021/jf030490pSearch in Google Scholar PubMed

11. Joullie, M. M., Thompson, T. R. and Nemeroff, N. H.: Ninhydrin and ninhydrin analogs. Syntheses and applications. Tetrahedron47 (1991) 87918830. 10.1016/s0040-4020(01)80997-2Search in Google Scholar

12. Kabir-ud-Din and Siddiqui, U. S.: Catalytic role of gemini surfactant micelles in the ninhydrin-L-isoleucine reaction. Colloid J.72 (2010) 1422. 10.1134/s1061933x10010035Search in Google Scholar

13. Khan, I. A., Bano, M. and Kabir-ud-Din: Micellar and Solvent Effects on the Rate of Reaction Between L-Tyrosine and Ninhydrin. J. Disp. Sci. Technol.31 (2010) 177182. 10.1080/01932690903110269.Search in Google Scholar

14. Akram, M., Zaidi, N. H. and Kabir-ud-Din: Kinetics and mechanism of interaction of dipeptide (glycyl-glycine) with ninhydrin in aqueous micellar media; Int. J. Chem. Kinet.38(2006)643650. 10.1002/kin.20195.Search in Google Scholar

15. Akram, M., Zaidi, N. H. and Kabir-ud-Din: Micelle-Catalyzed Interaction Between [Ni(II)-Gly-Gly] + and Ninhydrin. J. Disp. Sci. Technol.29 (2008) 13731380. 10.1080/01932690802313030Search in Google Scholar

16. Akram, M., Kumar, D. and Kabir-ud-Din: Effect of dicationic gemini surfactants 16-s-16 (s = 4, 5, 6) on the ninhydrin-dipeptide (glycyl-tyrosine) reaction. Int. J. Chem. Kinet.44 (2012) 800809. 10.1002/kin.20731Search in Google Scholar

17. Zourab, Sh. M., Ezzo, E. M., Aila, H. J. and Salem, J. K. J.: Oxidation of Amines by Potassium Ferricyanide in AOT Surfactant Systems. J. Disper. Sci. Technol.24 (2003) 6777. 10.1081/dis-120017945Search in Google Scholar

18. Sanchez, F., Moya, M. L., Rogriguez, A., Jimenez, R., Gomez-Herrera, C., Yanes, C. and Lopez-Corrj, P.: Micellar, Microemulsion, and Salt Kinetic Effects upon the Reaction Fe(CN)2 (bpy)2 + S2O8-. Langmuir13 (1997) 30843089. 10.1021/la960989wSearch in Google Scholar

19. Rodrigues, M. P., Prieto, G., Rega, C., Verla, L. M., Sarmiento, F. and Mosquera, V. A.: A Comparative Study of the Determination of the Critical Micelle Concentration by Conductivity and Dielectric Constant Measurements. Langmuir14 (1998) 44224426. 10.1021/la980296aSearch in Google Scholar

20. Fendler, J. H. and Fendler, E. J.: Physical and Chemical Properties of Surfactants and Micelles in Aqueous Solutions, Catalysis in Miceller and Macromolecular Systems. Academic Press: New York (1975) 1941. 10.1016/b978-0-12-252850-7.50006-xSearch in Google Scholar

21. Rafiquee, M. Z. A., Shah, R. A., Kabir-ud-Din and Khan, Z.: Kinetics of the interaction of Cd(II)-histidine complex with ninhydrin in absence and presence of cationic and anionic micelles; Int. J. Chem. Kinet.29 (1997) 131138. 10.1002/(sici)1097-4601(1997)29:2<131::aid-kin7>3.0.co;2-vSearch in Google Scholar

22. Akram, M., Kumar, D. and Kabir-ud-Din: Effect of dicationic gemini surfactants 16-s-16 (s = 4, 5, 6) on the ninhydrin-dipeptide (glycyl-tyrosine) reaction. Eur. Chem. Bull.2 (2013) 801809. 10.1002/kin.20731Search in Google Scholar

23. Kumar, D., Akram, M. and Kabir-ud-Din: Kinetic and Mechanistic Studies on [Zn(II)-Gly-Phe]+-Ninhydrin Reaction in Aqueous and Cationic CTAB Surfactant Micelles. J. Disp. Sci. Technol.35 (2014) 17091716. 10.1080/01932691.2013.870043Search in Google Scholar

24. Pal, T., De, S., Jana, N. R., Pradhan, N., Mandal, M., Pal, A., Beezer, A. E. and Mitchel, J. C.: Organized Media as Redox Catalysts. Langmuir14 (1998) 47244730. 10.1021/la980057n.Search in Google Scholar

25. Keizer, J.: Theory of rapid bimolecular reactions in solution and membranes. Acc. Chem. Res.18 (1985) 235241. 10.1021/ar00116a002Search in Google Scholar

26. Blumen, A. K., Laufter, J. and Zumofen, G.: Reactions in Disordered Media Modelled by Fractals, Fractals in Physics, in: L.Pietronero, E.Tossati (eds.), North-Holland, Amsterdam (1986) 399408. 10.1016/B978-0-444-86995-1.50074-3Search in Google Scholar

27. Minch, M. J. and Shah, S. S.: Spectroscopic studies of hydrophobic association. Merocyanine dyes in cationic and anionic micelles. J. Org. Chem.44 (1979) 32523255. 10.1021/jo01332a033Search in Google Scholar

28. Pal, T., Sau, T. K. and Jana, N. R.: Reversible Formation and Dissolution of Silver Nanoparticles in Aqueous Surfactant Media. Langmuir13 (1997) 14811485. 10.1021/la960834o.Search in Google Scholar

29. Tascioglu, S.: Micellar solutions as reaction media. Tetrahedron52 (1996) 1111311152. 10.1016/0040-4020(96)00669-2Search in Google Scholar

30. Bunton, C. A., Foroudian, H. J. and Gillitt, N. D.: Effects of Headgroup Structure on Dephosphorylation of p-Nitrophenyl Diphenyl Phosphate by Functional Oximate Comicelles. Langmuir15 (1999) 10671074. 10.1021/la981138mSearch in Google Scholar

31. Bunton, C. A., Mhala, M. M. and Moffatt, J. R.: Nucleophilic reactions in zwitterionic micelles of amine oxide or betaine sulfonate surfactants. J. Phys. Chem.93 (1989) 854858. 10.1021/j100339a061Search in Google Scholar

32. Romsted, L. S.: A General Kinetic Theory of Rate Enhancements for Reactions between Organic Substrates and Hydrophilic Ions in Micellar Systems. Micellization, Solubilization, and Microemulsions Proceedings, edited by K. L.SpringerUSA, (1977) 509530. 10.1007/978-1-4613-4157-4-2Search in Google Scholar

33. Vega, R. La., Tejeda, P. P., Cornejo, P. L. and Sanches, F.: Kinetic Study of the Oxidation of [Ru(NH3)5pz]2+ by [Co(C2O4)3]3- in AOT-Oil-Water Microemulsions and in CTACl Micellar Solutions. Langmuir20 (2004) 15581563. 10.1021/la0302089Search in Google Scholar

34. El-Aila, H. J. Y.: Micellar Catalytic and Salt Effect on Oxidation of EDTA by MnO4-. J. Disp. Sci. Technol33 (2012) 16881694. 10.1080/01932691.2011.635516Search in Google Scholar

35. El-Aila, H. J. Y.: Micellar Catalytic Reduction of Glycine by 2,7-Dibromo-4-(Hydroxymercuri)-Fluoresceine Disodium Salt: Kinetic and Thermodynamic Aspects. J. Disp. Sci. Technol34 (2013) 957963. 10.1080/01932691.2012.735904.Search in Google Scholar

36. Cai, R., Freiser, H. and Muralidharan, S.: Kinetics of the Dissociation of Nickel-2-Methyl-8-hydroxyquinoline in Water and Surfactant Micelles. Langmuir11 (1995) 29262930. 10.1021/la00008a014Search in Google Scholar

Received: 2014-06-07
Accepted: 2014-09-16
Published Online: 2015-03-21
Published in Print: 2015-03-16

© 2015, Carl Hanser Publisher, Munich

Downloaded on 5.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/113.110357/html
Scroll to top button