Micellar Studies of Magnesium Soaps Using Ion-selective Electrode
-
L. C. Heda
Abstract
Magnesium soaps of caproic and caprylic acids were prepared and a cell was set up for the measurement of EMF (electromotive force) of the cell containing referred soap solutions in methanol water solvent system with the aid of ion-selective electrode. The critical micelle concentration of soap solutions was determined by plotting the electromotive force of the cell against soap concentration. The critical micelle concentration of these soap solutions varies with increase in chain length of the fatty acids in the soap. The energetic studies of the system have been carried out from the electromotive force values of the cell containing soap solution to ascertain the chain length compatibility and agglomeration profile. The values of free energy change are negative indicating the spontaneity of cell reaction and decreases with increasing soap concentration while increases with the increase methanol concentration in solvent mixture.
Kurzfassung
Aus Capronsäure und Caprylsäure wurden Magnesiumseifen dargestellt. Mit diesen Seifenlösungen wurde in einem Methanol/Wasser-Lösungssystem eine Zelle zur Messung der EMK (elektromotorische Kraft) dieser Zelle mit Hilfe einer ionenselektiven Elektrode konfiguriert. Durch graphische Darstellung der elektromotorischen Kraft der Zelle gegen die Seifenkonzentration wurden die kritischen Mizellbildungskonzentrationen der Seifenlösungen bestimmt, die mit zunehmender Kettenlänge der Fettsäurenseifen variieren. Die energetischen Untersuchungen des Systems erfolgten durch die EMK-Werte der seifenhaltigen Zelle, um die Kettenlängenkompatibilität und die Agglomerationsform zu bestimmen. Die negative Änderung der freien Energie weist auf eine spontane Zellenreaktion hin, die mit Erhöhung der Seifenkonzentration abnimmt, während sie mit Erhöhung der Methanolkonzentration in der Lösungsmittelmischung zunimmt.
References
1. Lehman, A. J.: Assoc. Food and Drug Officials, U.S. Quart. Bull.15 (1951) 82–89.Suche in Google Scholar
2. Bershold, E., Hoyer, H. and Rosenberg, G. V.: U.S., 2, Aug. 5 (1958) 846, 330.Suche in Google Scholar
3. Cunder, J. and Licata, F. J.: U.S., 2, Aug. 23 (1955) 716, 073.Suche in Google Scholar
4. Ninich, A. and Levinson, H.: U.S., 2, March 25 (1941) 236, 296.Suche in Google Scholar
5. Soc. Anon. Ghent.: Brit., March21 (1962) 891, Neth. Appl. July 17 (1958) 858.Suche in Google Scholar
6. Robert, A.: Fr., 2, Oct. 13 (1972) 123, 38,. Appl., Sept. 25 (1970) 7034, 744.Suche in Google Scholar
7. Reynolds Maatschappij, N. V.: Neth., June5 (1962) 101, Appl. May 5 (1956) 474.Suche in Google Scholar
8. Instytul Mechaniki Precyzyjnej: Pol., Spt.20 (1962) 46, Appl. Decl. Lpp. (1960) 092.Suche in Google Scholar
9. Alvisatos, A. P.: Science271(1996) 933. 10.1126/science.271.5251.933Suche in Google Scholar
10. Henglein, A.: Ber. Bunsenges. Phys. chem.101 (1997) 1562. 10.1002/bbpc.19971011103Suche in Google Scholar
11. Kim, S. H., Medeiros-Ribeiro, G., Ohlberg, D. A., Williams, R. A. and Heath, Z. R.: J. Phys. chem.103 (1999) 10341.Suche in Google Scholar
12. McConnel, W. P., Novak, J. P., BrousseavIII, L. C., Fuierer, R. R., Tenent, R. C. and Feldhem, D. L.: J. Phys. Chem. B104 (2000) 8925. 10.1021/jp000926tSuche in Google Scholar
13. Pradhan, N., Pal, A. and Pal, T.: Langmuir17 (2001) 1800. 10.1021/la000862dSuche in Google Scholar
14. Mallick, K., Wong, Z. L. and Pal, T.: J. Photo Chem., Photobio. A140 (2001) 75. 10.1016/S1010-6030(01)00389-6Suche in Google Scholar
15. Varma, R. P. and Kumar, K.: Cellulose Chem. Technol.9 (1975) 23–30.Suche in Google Scholar
16. Mehta, V. P., Hasan, M., Mathur, S. P. and Rai, G. L.: Tenside Deterg.16 (2) (1979) 79–80.Suche in Google Scholar
17. Koga, Y. and Matuura: Mem. Fac. Sci. Kyushu Univ. Ser. C.4 (1961) 1.Suche in Google Scholar
18. Kagarise, R. E.: J. Phy. Chem.59 (1955) 271. 10.1021/j150525a019Suche in Google Scholar
19. Mehrotra, K. N., Rajpurohit, M. S. and Godara, V. K.: J. Macromol. Sci. Chem.19 (1983) 181. 10.1080/00222338308069433Suche in Google Scholar
20. Mehrotra, K. N. and Saroha, S. P. S.: J. Ind. Chem. Soc.56 (1979) 466.Suche in Google Scholar
21. Duval, C., Lacomte, J. and Douville, F.: Ann. Phys.17 (1942) 95.Suche in Google Scholar
22. Varma, R. P. and Kumar, K.: J. Indian Chem. Soc.Vth (1978) 675.Suche in Google Scholar
23. Vesely, J., Weiss, D. and Stulic, K.: Analysis with Ion Selective Electrodes, Page – 15–6, Edit. by John Wiley & Sons (1978).Suche in Google Scholar
24. Saleh, M. B.: Ind. J. Chem.30A (1991) 444–446.Suche in Google Scholar
25. Tiwari, K. K. and Chattopadhyaya, M. C.: Ind. J. Chem.40 A (2001) 619–621.Suche in Google Scholar
26. Kobayashi, T., Kataoka, M. and Kambara, T.: Talanta.27 (1980) 253–256. 10.1016/0039-9140(80)80052-XSuche in Google Scholar
27. Vesely, J., Weiss, D. and Stulic, K.: Analysis with Ion Selective Electrodes, Page – 23, Edit. by John Wiley & Sons (1978).Suche in Google Scholar
28. Laing, M. E.: J. Chem. Soc.113 (1918) 435. 10.1039/ct9181300435Suche in Google Scholar
29. Varma, R. P. and Bahadur, P.: Cellulose Chem. Technol.8 (1974) 27–37.Suche in Google Scholar
30. Schulman, J. H. and Riley, D. P.: J. Colloid. Sci.3 (1948) 383. 10.1016/0095-8522(48)90024-5Suche in Google Scholar
31. Mehrotra, K. N. and Bhargava, S. C.: Z. Physik. Chem.233 (1966) 97–102.10.1515/zpch-1966-23313Suche in Google Scholar
32. Jones, G. and Bick Ford, C. F.: J. Am. Chem. Soc.56 (1934) 604.Suche in Google Scholar
33. Mehrotra, K. N. and Bhargava, S. C.: Bull, Chem. Soc. Japan405 (1967) 1255. 10.1246/bcsj.40.1255Suche in Google Scholar
34. Prakash, S., Icinaporia, F. M. and Pandey, J. D.: J. Phys. Chem.58 (1964) 3078. 10.1021/j100792a512Suche in Google Scholar
35. Upadhyaya, S. K.: Ind. J. Chem.39A (2000) 537–540.Suche in Google Scholar
36. Nandi, N.: Ind. J. Chem.37A (1998) 114–117.Suche in Google Scholar
37. Mehrotra, K. N. and Bhargava, S. C.: Kolloid –Zeitschrift and Zeitschrift Polymer, Bd. 210, (1966) 2, 138–143.Suche in Google Scholar
© 2008, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Application
- Synthesis of an Imidazoline Phosphate Surfactant and its Application on Corrosion Inhibition
- Properties of Oxyethylenated Fatty Acid Methyl Esters and Ethyl Esters; Hydrolysis, Critical Micelle Concentrations and Foaming
- Effect of Nano and Micro Emulsion Silicone Softeners on Properties of Polyester Fibers
- Novel Surfactants
- Synthesis, Characterization and Surface Active Properties of Imidazolinium Surfactant Derived from Oleic Acid and Diethylenetriamine
- Physical Chemistry
- Micellization of Cetyltributylphosphonium Bromide in some Binary Aqueous Solvents Mixtures
- Micellar Studies of Magnesium Soaps Using Ion-selective Electrode
- Influence of the Cross-sectional Geometry on Wettability and Cleanability of Polyester Woven Fabrics
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Application
- Synthesis of an Imidazoline Phosphate Surfactant and its Application on Corrosion Inhibition
- Properties of Oxyethylenated Fatty Acid Methyl Esters and Ethyl Esters; Hydrolysis, Critical Micelle Concentrations and Foaming
- Effect of Nano and Micro Emulsion Silicone Softeners on Properties of Polyester Fibers
- Novel Surfactants
- Synthesis, Characterization and Surface Active Properties of Imidazolinium Surfactant Derived from Oleic Acid and Diethylenetriamine
- Physical Chemistry
- Micellization of Cetyltributylphosphonium Bromide in some Binary Aqueous Solvents Mixtures
- Micellar Studies of Magnesium Soaps Using Ion-selective Electrode
- Influence of the Cross-sectional Geometry on Wettability and Cleanability of Polyester Woven Fabrics