Startseite Preparation and physical properties of chitosan-coated calcium sulphate whiskers
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Preparation and physical properties of chitosan-coated calcium sulphate whiskers

  • Qing Jiang EMAIL logo , Yun Cheng , Xiu-Ying Cao , Rui Wei und Min Zhao
Veröffentlicht/Copyright: 24. Juni 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

To improve the performance of calcium sulphate whiskers (CSWs) in the papermaking industry, a series of chitosan-coated (CS) calcium sulphate whiskers (CS-CSWs) was prepared, with the aim of effectively reducing their solubility in aqueous solutions. The CS-CSWs were prepared by immersing CSWs in a chitosan acid solution and then cross-linking with alkaline gel via hydrogen-bonding interaction. The CS-CSWs were characterised in terms of water solubility, zeta potential, contact angle, scanning electron microscopy, thermo gravimetric analysis and X-ray photoelectron spectroscopy (XPS). The results indicated that chitosan had a good effect on the surface modification of CSWs. Under optimal conditions, the water solubility of CS-CSWs decreased by 50 %, and the contact angle increased by 63 %. The XPS measurement indicated that the relative thickness of the chitosan coating was 9.8 nm.

[1] Ashori, A., Harun, J., Zin, W. M., & Yusoff, M. N. M. (2007). Enhancing dry-strength properties of kenaf (Hibiscus cannabinus) paper through chitosan. Polymer-Plastics Technology and Engineering, 45, 125–129. DOI: 10.1080/03602550500373709. http://dx.doi.org/10.1080/0360255050037370910.1080/03602550500373709Suche in Google Scholar

[2] Bahmani, S. A., East, G. C., & Holme, I. (2000). The application of chitosan in pigment printing. Coloration Technology, 116, 94–99. DOI: 10.1111/j.1478-4408.2000.tb00027.x. http://dx.doi.org/10.1111/j.1478-4408.2000.tb00027.x10.1111/j.1478-4408.2000.tb00027.xSuche in Google Scholar

[3] Bao, S. H., Fujio, K., & Nomura, T. (2005). Effect of ionic surfactants on the oscillation frequency of one-electrodeseparated piezoelectric quartz crystals modified with chitosan and its derivative. Colloid and Polymer Science, 283, 619–626. DOI: 10.1007/s00396-004-1192-2. http://dx.doi.org/10.1007/s00396-004-1192-210.1007/s00396-004-1192-2Suche in Google Scholar

[4] Calvo, P., Remuñán-López, C., Vila-Jato, J. L., & Alonso, M. J. (1997). Development of positively charged colloidal drug carriers: Chitosan-coated polyester nanocapsules and submicron-emulsions. Colloid and Polymer Science, 275, 46–53. DOI: 10.1007/s003960050050. http://dx.doi.org/10.1007/s00396005005010.1007/s003960050050Suche in Google Scholar

[5] Faibish, R. S., Yoshida, W., & Cohen, Y. (2002). Contact angle study on polymer-grafted silicon wafers. Journal of Colloid and Interface Science, 256, 341–350. DOI: 10.1006/jcis.2002.8612. http://dx.doi.org/10.1006/jcis.2002.861210.1006/jcis.2002.8612Suche in Google Scholar

[6] Gan, Q., Wang, T., Cochrane, C., & McCarron, P. (2005). Modulation of surface charge, particle size and morphological properties of chitosan-TPP nanoparticles intended for gene delivery. Colloids and Surfaces B: Biointerfaces, 44, 65–73. DOI: 10.1016/j.colsurfb.2005.06.001. http://dx.doi.org/10.1016/j.colsurfb.2005.06.00110.1016/j.colsurfb.2005.06.001Suche in Google Scholar

[7] Guan, B. H., Ye, Q. Q., Zhang, J. L., Lou, W. B., & Wu, Z. B. (2010). Interaction between α-calcium sulphate hemihydrate and superplasticizer from the point of adsorption characteristics, hydration and hardening process. Cement and Concrete Research, 40, 253–259. DOI: 10.1016/j.cemconres.2009.08.027. http://dx.doi.org/10.1016/j.cemconres.2009.08.02710.1016/j.cemconres.2009.08.027Suche in Google Scholar

[8] Krajewska, B. (2004). Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme and Microbial Technology, 35, 126–139. DOI: 10.1016/j.enzmictec.2003.12.013. http://dx.doi.org/10.1016/j.enzmictec.2003.12.01310.1016/j.enzmictec.2003.12.013Suche in Google Scholar

[9] Leong, K. W., Mao, H. Q., Truong-Le, V. L., Roy, K., Walsh, S. M., & August, J. T. (1998). DNA-polycation nanospheres as non-viral gene delivery vehicles. Journal of Controlled Release, 53, 183–193. DOI: 10.1016/s0168-3659(97)00252-6. http://dx.doi.org/10.1016/S0168-3659(97)00252-610.1016/S0168-3659(97)00252-6Suche in Google Scholar

[10] Lim, S. H., & Hudson, S. M. (2003). Review of chitosan and its derivatives as antimicrobial agents and their uses as textile chemicals. Journal of Macromolecular Science, Part C: Polymer Reviews, 43, 223–269. DOI: 10.1081/mc-120020161. http://dx.doi.org/10.1081/MC-12002016110.1081/MC-120020161Suche in Google Scholar

[11] Majiti, N. V., & Ravi, K. (2000). A review of chitin and chitosan applications. Reactive and Functional Polymers, 46, 1–27. DOI: 10.1016/s1381-5148(00)00038-9. http://dx.doi.org/10.1016/S1381-5148(00)00038-910.1016/S1381-5148(00)00038-9Suche in Google Scholar

[12] Nordtveit, R. J., Vårum, K. M., & Smidsrød, O. (1996). Degradation of partially N-acetylated chitosans with hen egg white and human lysozyme. Carbohydrate Polymers, 29, 163–167. DOI: 10.1016/0144-8617(96)00003-3. http://dx.doi.org/10.1016/0144-8617(96)00003-310.1016/0144-8617(96)00003-3Suche in Google Scholar

[13] Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31, 603–632. DOI: 10.1016/j.progpolymsci.2006.06.001. http://dx.doi.org/10.1016/j.progpolymsci.2006.06.00110.1016/j.progpolymsci.2006.06.001Suche in Google Scholar

[14] Shanmugasundaram, N., Ravichandran, P., Neelakanta Reddy, P., Ramamurty, N., Pal, S., & Panduranga Rao, K. (2001). Collagen-chitosan polymeric scaffolds for the in vitro culture of human epidermoid carcinoma cells. Biomaterials, 22, 1943–1951. DOI: 10.1016/S0142-9612(00)00220-9. http://dx.doi.org/10.1016/S0142-9612(00)00220-910.1016/S0142-9612(00)00220-9Suche in Google Scholar

[15] Sakai, Y., Hayano, K., Yoshioka, H., & Yoshioka, H. (2001). A novel method of dissolving chitosan in water for industrial application. Polymer Journal, 33, 640–642. DOI: 10.1295/polymj.33.640. http://dx.doi.org/10.1295/polymj.33.64010.1295/polymj.33.640Suche in Google Scholar

[16] Sakai, Y., Hayano, K., Yoshioka, H., Fujieda, T., Saito, K., & Yoshioka, H. (2002). Chitosan-coating of cellulosic materials using an aqueous chitosan-CO2 solution. Polymer Journal, 34, 144–148. DOI: 10.1295/polymj.34.144. http://dx.doi.org/10.1295/polymj.34.14410.1295/polymj.34.144Suche in Google Scholar

[17] Sloviková, A., Vojtová, L., & Jančař, J. (2008). Preparation and modification of collagen-based porous scaffold for tissue engineeringt. Chemical Papers, 62, 417–422. DOI: 10.2478/s11696-008-0045-8. http://dx.doi.org/10.2478/s11696-008-0045-810.2478/s11696-008-0045-8Suche in Google Scholar

[18] Wang, X. L., Zhu, Y. M., Han, Y. X., Yuan, Z. T., & Yin, W. Z. (2009). Toughening of polypropylene with calcium sulfate whiskers treated by coupling agents. Advanced Materials Research, 58, 225–229. DOI: 10.4028/www.scientific.net/amr.58.225. http://dx.doi.org/10.4028/www.scientific.net/AMR.58.22510.4028/www.scientific.net/AMR.58.225Suche in Google Scholar

[19] Wang, Y. W., Kim, Y. Y., Christenson, H. K., & Meldrum, F. C. (2012). A new precipitation pathway for calcium sulfate dihydrate (gypsum) via amorphous and hemihydrate intermediates. Chemical Communications, 48, 504–506. DOI: 10.1039/c1cc14210k. http://dx.doi.org/10.1039/c1cc14210k10.1039/C1CC14210KSuche in Google Scholar

[20] Xu, A. Y., Li, H. P., Luo, K. B., & Xiang, L. (2011). Formation of calcium sulfate whiskers from CaCO3-bearing desulfurization gypsum. Reserch on Chemical Intermediates, 37, 449–455. DOI: 10.1007/s11164-011-0283-1. http://dx.doi.org/10.1007/s11164-011-0283-110.1007/s11164-011-0283-1Suche in Google Scholar

[21] Zhao, K., Asami, K., & Lei, J. (2002). Dielectric analysis of chitosan microsphere suspensions: study on its ion adsorption. Colloid and Polymer Science, 280, 1038–1044. DOI: 10.1007/s00396-002-0730-z. http://dx.doi.org/10.1007/s00396-002-0730-z10.1007/s00396-002-0730-zSuche in Google Scholar

[22] Zhao, Z. P., Wang, Z., & Wang, S. C. (2003). Formation, charged characteristic and BSA adsorption behavior of carboxymethyl chitosan/PES composite MF membrane. Journal of Membrane Science, 217, 151–158. DOI: 10.1016/s0376-7388(03)00105-4. http://dx.doi.org/10.1016/S0376-7388(03)00105-410.1016/S0376-7388(03)00105-4Suche in Google Scholar

[23] Zhang, M. G., Smith, A., & Gorski, W. (2004). Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes. Analytical Chemistry, 76, 5045–5050. DOI: 10.1021/ac049519u. http://dx.doi.org/10.1021/ac049519u10.1021/ac049519uSuche in Google Scholar PubMed

Published Online: 2014-6-24
Published in Print: 2014-10-1

© 2014 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Chemical preparation and applications of silver dendrites
  2. Evaluation of antioxidant activity and DNA cleavage protection effect of naphthyl hydroxamic acid derivatives through conventional and fluorescence microscopic methods
  3. Modelling of ORL1 receptor-ligand interactions
  4. Kinetics of enantioselective liquid-liquid extraction of phenylglycine enantiomers using a BINAP-copper complex as chiral selector
  5. Diffusive transport of Cu(II) ions through thin ion imprinted polymeric membranes
  6. Magnetic mixed matrix membranes in air separation
  7. The use of impregnated perlite as a heterogeneous catalyst for biodiesel production from marula oil
  8. Nitrobenzene degradation by micro-sized iron and electron efficiency evaluation
  9. RP-HPLC-UV-ESI-MS phytochemical analysis of fruits of Conocarpus erectus L.
  10. Residue analysis of fosthiazate in cucumber and soil by QuEChERS and GC-MS
  11. Degradation of polylactide using basic ionic liquid imidazolium acetates
  12. Ring-opening polymerisation of ɛ-caprolactone catalysed by Brønsted acids
  13. Click synthesis by Diels-Alder reaction and characterisation of hydroxypropyl methylcellulose-based hydrogels
  14. Preparation and physical properties of chitosan-coated calcium sulphate whiskers
  15. A facile synthetic route for antineoplastic drug GDC-0449
  16. Two new frameworks for biphenyl-3,3′,5,5′-tetracarboxylic acid and nitrogen-containing organics
  17. Antioxidant and binding properties of methanol extracts from indigo plant leaves
  18. Dithiols as more effective than monothiols in protecting biomacromolecules from free-radical-mediated damage: in vitro oxidative degradation of high-molar-mass hyaluronan
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-014-0579-x/pdf
Button zum nach oben scrollen