Startseite Kinetics of enantioselective liquid-liquid extraction of phenylglycine enantiomers using a BINAP-copper complex as chiral selector
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Kinetics of enantioselective liquid-liquid extraction of phenylglycine enantiomers using a BINAP-copper complex as chiral selector

  • Pan-Liang Zhang EMAIL logo , Jing-Jing Luo , Ke-Wen Tang und Jian-Min Yi
Veröffentlicht/Copyright: 24. Juni 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Kinetic study of reactive extraction of phenylglycine (PhgH) racemate with S-BINAP ((S)-(−)-2,2′-bis(diphenylphosphino)-1,1′-binaphthalene)-copper complex (BINAP-Cu) as the chiral selector was performed in a modified Lewis cell. The theory of extraction accompanied by a chemical reaction was applied to achieve insightful understanding of the extraction process. The effects of agitation speed, interface area, pH value of the aqueous phase, initial concentration of PhgH racemate, and initial concentration of BINAP-Cu on the specific rate of extraction were investigated. An extraction course was simulated based on the rate equations. The forward rate constants of 3.14 × 10−5 m3.4 mol−0.7 s−1 for R-PhgH and 4.03 × 10−5 m3.4 mol−0.7 s−1 for S-PhgH, respectively, were found. The modeled extraction course was in good agreement with the experimental one.

[1] Afonso, C. A. M., & Crespo, J. G. (2004). Recent advances in chiral resolution through membrane-based approaches. Angewandte Chemie International Edition, 43, 5293–5295. DOI: 10.1002/anie.200460037. http://dx.doi.org/10.1002/anie.20046003710.1002/anie.200460037Suche in Google Scholar

[2] De Camp, W. H. (1989). The FDA perspective on the development of stereoisomers. Chirality, 1, 2–6. DOI: 10.1002/chir.530010103. http://dx.doi.org/10.1002/chir.53001010310.1002/chir.530010103Suche in Google Scholar

[3] Gavioli, E., Maier, N. M., Minguillón, C., & Lindner, W. (2004). Preparative enantiomer separation of dichlorprop with a cinchona-derived chiral selector employing centrifugal partition chromatography and high-performance liquid chromatography: A comparative study. Analytical Chemistry, 76, 5837–5848. DOI: 10.1021/ac040102y. http://dx.doi.org/10.1021/ac040102y10.1021/ac040102ySuche in Google Scholar

[4] Gourlay, M. D., Kendrick, J., & Leusen, F. J. J. (2008). Predicting the spontaneous chiral resolution by crystallization of a pair of flexible nitroxide radicals. Crystal Growth & Design, 8, 2899–2905. DOI: 10.1021/cg701256e. http://dx.doi.org/10.1021/cg701256e10.1021/cg701256eSuche in Google Scholar

[5] Hutt, A. J. (1991). Drug chirality: Impact on pharmaceutical regulation. Chirality, 3, 161–164. DOI: 10.1002/chir.530030303. http://dx.doi.org/10.1002/chir.53003030310.1002/chir.530030303Suche in Google Scholar

[6] Jiao, F. P., Chen, X. Q., Hu, W. G., Ning, F. R., & Huang, K. L. (2007). Enantioselective extraction of mandelic acid enantiomers by l-dipentyl tartrate and β-cyclodextrin as binary chiral selectors, Chemical Papers, 61, 326–328. DOI: 10.2478/s11696-007-0041-4. http://dx.doi.org/10.2478/s11696-007-0041-410.2478/s11696-007-0041-4Suche in Google Scholar

[7] Kafilzadeh, F., Farhangdoost, M. S., & Tahery, Y. (2010). Isolation and identification of phenol degrading bacteria from Lake Parishan and their growth kinetic assay. African Journal of Biotechnology, 9, 6721–6726. DOI: 10.5897/ajb10.665. Suche in Google Scholar

[8] Konishi, K., Yahara, K., Toshishige, H., Aida, T., & Inoue, S. (1994). A novel anion-binding chiral receptor based on metalloporphyrin with molecular asymmetry. Highly enantioselective recognition of amino acid derivatives. Journal of the American Chemical Society, 116, 1337–1344. DOI: 10.1021/ja00083a019. 10.1021/ja00083a019Suche in Google Scholar

[9] Liu, J. J., Wu, G. H., Tang, K. W., Liu, X., & Zhang, P. L. (2014). Equilibrium of chiral extraction of 4-nitro-d,l-phenylalanine with BINAP metal complexes. Chemical Papers, 68, 80–89. DOI: 10.2478/s11695-013-0419-4. http://dx.doi.org/10.2478/s11696-013-0419-4Suche in Google Scholar

[10] Maier, N. M., Franco, P., & Lindner, W. (2001). Separation of enantiomers: needs, challenges, perspectives. Journal of Chromatography A, 906, 3–33. DOI: 10.1016/s0021-9673(00)00532-x. http://dx.doi.org/10.1016/S0021-9673(00)00532-X10.1016/S0021-9673(00)00532-XSuche in Google Scholar

[11] Peng, Y. F., He, Q., Zuo, B., Niu, H. B., Tong, T. Z., & Zhao, H. L. (2013). Enantioselective liquid-liquid extraction of zopiclone with mandelic acid ester derivatives. Chirality, 25, 952–956. DOI: 10.1002/chir.22239. http://dx.doi.org/10.1002/chir.2223910.1002/chir.22239Suche in Google Scholar

[12] Pickering, P. J., & Chaudhuri, J. B. (1997). Equilibrium and kinetic studies of the enantioselective complexation of (d/l)-phenylalanine with copper (ii) N-decyl-(l)-hydroxyproline. Chemical Engineering Science, 52, 377–386. DOI: 10.1016/s0009-2509(96)00420-4. http://dx.doi.org/10.1016/S0009-2509(96)00420-410.1016/S0009-2509(96)00420-4Suche in Google Scholar

[13] Poposka, F. A., Nikolovski, K., & Tomovska, R. (1998). Kinetics, mechanism and mathematical modeling of extraction of citric acid with isodecanol/n-paraffins solutions of trioctylamine. Chemical Engineering Science, 53, 3227–3237. DOI: 10.1016/s0009-2509(98)00125-0. http://dx.doi.org/10.1016/S0009-2509(98)00125-010.1016/S0009-2509(98)00125-0Suche in Google Scholar

[14] Reeve, T. B., Cros, J. P., Gennari, C., Piarulli, U., & de Vries, J. G. (2006). A practical approach to the resolution of racemic N-benzyl α-amino acids by liquid-liquid extraction with a lipophilic chiral salen-cobalt(III) complex. Angewandte Chemie International Edition, 45, 2449–2453. DOI: 10.1002/anie.200504116. http://dx.doi.org/10.1002/anie.20050411610.1002/anie.200504116Suche in Google Scholar PubMed

[15] Schuur, B., Winkelman, J. G. M., de Vries, J. G., & Heeres, H. J. (2010). Experimental and modeling studies on the enantioseparation of 3,5-dinitrobenzoyl-(R),(S)-leucine by continuous liquid-liquid extraction in a cascade of centrifugal contactor separators. Chemical Engineering Science, 65, 4682–4690. DOI: 10.1016/j.ces.2010.05.015. http://dx.doi.org/10.1016/j.ces.2010.05.01510.1016/j.ces.2010.05.015Suche in Google Scholar

[16] Schuur, B., Verkuijl, B. J. V., Minnaard, A. J., de Vries, J. G., Heeres, H. J., & Feringa, B. L. (2011). Chiral separation by enantioselective liquid-liquid extraction. Organic & Biomolecular Chemistry, 9, 36–51. DOI: 10.1039/c0ob00610f. http://dx.doi.org/10.1039/c0ob00610f10.1039/C0OB00610FSuche in Google Scholar

[17] Shimada, T., Suda, M., Nagano, T., & Kakiuchi, K. (2005). Facile preparation of a new BINAP-based building block, 5,5′-diiodoBINAP, and its synthetic application. The Journal of Organic Chemistry, 70, 10178–10181. DOI: 10.1021/jo0517186. http://dx.doi.org/10.1021/jo051718610.1021/jo0517186Suche in Google Scholar PubMed

[18] Steensma, M., Kuipers, N. J. M., de Haan, A. B., & Kwant, G. (2007). Modelling and experimental evaluation of reaction kinetics in reactive extraction for chiral separation of amines, amino acids and amino-alcohols. Chemical Engineering Science, 62, 1395–1407. DOI: 10.1016/j.ces.2006.11.043. http://dx.doi.org/10.1016/j.ces.2006.11.04310.1016/j.ces.2006.11.043Suche in Google Scholar

[19] Sunsandee, N., Leepipatpiboon, N., Ramakul, P., & Pancharoen, U. (2012). The selective separation of (S)-amlodipine via a hollow fiber supported liquid membrane: Modeling and experimental verification. Chemical Engineering Journal, 180, 299–308. DOI: 10.1016/j.cej.2011.11.068. http://dx.doi.org/10.1016/j.cej.2011.11.06810.1016/j.cej.2011.11.068Suche in Google Scholar

[20] Takeuchi, T., Horikawa, R., & Tanimura, T. (1984). Enantioselective solvent extraction of neutral DL-amino acids in twophase systems containing N-n-alkyl-l-proline derivatives and copper(II) ion. Analytical Chemistry, 56, 1152–1155. DOI: 10.1021/ac00271a022. http://dx.doi.org/10.1021/ac00271a02210.1021/ac00271a022Suche in Google Scholar

[21] Tan, B., Luo, G. S., & Wang, J. D. (2007). Extractive separation of amino acid enantiomers with co-extractants of tartaric acid derivative and Aliquat-336. Separation and Purification Technology, 53, 330–336. DOI: 10.1016/j.seppur.2006.08.021. http://dx.doi.org/10.1016/j.seppur.2006.08.02110.1016/j.seppur.2006.08.021Suche in Google Scholar

[22] Tang, K. W., Yi, J. M., Liu, Y. B., Jiang, X. Y., & Pan, Y. (2009). Enantioselective separation of R,S-phenylsuccinic acid by biphasic recognition chiral extraction. Chemical Engineering Science, 64, 4081–4088. DOI: 10.1016/j.ces.2009.06.029. http://dx.doi.org/10.1016/j.ces.2009.06.02910.1016/j.ces.2009.06.029Suche in Google Scholar

[23] Tang, K. W., Song, L. T., Liu, Y. B., Pan, Y., & Jiang, X. Y. (2010). Separation of flurbiprofen enantiomers by biphasic recognition chiral extraction. Chemical Engineering Journal, 158, 411–417. DOI: 10.1016/j.cej.2010.01.009. http://dx.doi.org/10.1016/j.cej.2010.01.00910.1016/j.cej.2010.01.009Suche in Google Scholar

[24] Tang, K.W., & Zhang, P. L. (2011). Enantioselective extraction of terbutaline enantiomers with β-cyclodextrin derivatives as hydrophilic selectors. Chemical Papers, 65, 273–279. DOI: 10.2478/s11695-011-0011-8. http://dx.doi.org/10.2478/s11696-011-0011-8Suche in Google Scholar

[25] Tang, K. W., Zhang, P. L., Pan, C. Y., & Li, H. J. (2011a). Equilibrium studies on enantioselective extraction of oxybutynin enantiomers by hydrophilic β-cyclodextrin derivatives. AIChE Journal, 57, 3027–3036. DOI: 10.1002/aic.12513. http://dx.doi.org/10.1002/aic.1251310.1002/aic.12513Suche in Google Scholar

[26] Tang, K. W., Miao, J. B., Zhou, T., Liu, Y. B., & Song, L. T. (2011b). Reaction kinetics in reactive extraction for chiral separation of α-cyclohexyl-mandelic acid enantiomers with hydroxypropyl-β-cyclodextrin. Chemical Engineering Science, 66, 397–404. DOI: 10.1016/j.ces.2010.10.044. http://dx.doi.org/10.1016/j.ces.2010.10.04410.1016/j.ces.2010.10.044Suche in Google Scholar

[27] Tang, K. W., Cai, J., & Zhang, P. L. (2012a). Equilibrium and kinetics of reactive extraction of ibuprofen enantiomers from organic solution by hydroxypropyl-β-cyclodextrin. Industrial & Engineering Chemistry Research, 51, 964–971. DOI: 10.1021/ie202016g. http://dx.doi.org/10.1021/ie202016g10.1021/ie202016gSuche in Google Scholar

[28] Tang, K. W., Wu, G. H., Zhang, P. L., Zhou, C. S., & Liu, J. J. (2012b). Experimental and model study on enantioselective extraction of phenylglycine enantiomers with BINAP-metal complexes. Industrial & Engineering Chemistry Research, 51, 15233–15241. DOI: 10.1021/ie301976h. http://dx.doi.org/10.1021/ie301976h10.1021/ie301976hSuche in Google Scholar

[29] Tang, K. W., Fu, T., & Zhang, P. L. (2013). Enantioselective liquid-liquid extraction of (d,l)-valine using metal-BINAP complex as chiral extractant. Journal of Chemical Technology and Biotechnology, 88, 1920–1929. DOI: 10.1002/jctb.4051. http://dx.doi.org/10.1002/jctb.405110.1002/jctb.4051Suche in Google Scholar

[30] Tsukube, H., Shinoda, S., Uenishi, J. i., Kanatani, T., Itoh, H., Shiode, M., Iwachido, T., & Yonemitsu, O. (1998). Molecular recognition with lanthanide(III) tris(β-diketonate) complexes: Extraction, transport, and chiral recognition of unprotected amino acids. Inorganic Chemistry, 37, 1585–1591. DOI: 10.1021/ic970103r##1. http://dx.doi.org/10.1021/ic970103r10.1021/ic970103rSuche in Google Scholar

[31] Tulashie, S. K., Lorenz, H., & Seidel-Morgenstern, A. (2010). Solubility of mandelic acid enantiomers and their mixtures in three chiral solvents. Journal of Chemical & Engineering Data, 55, 5196–5200. DOI: 10.1021/je1006955. http://dx.doi.org/10.1021/je100695510.1021/je1006955Suche in Google Scholar

[32] Verkuijl, B. J. V., Minnaard, A. J., de Vries, J. G., & Feringa, B. L. (2009). Chiral separation of underivatized amino acids by reactive extraction with palladium-BINAP complexes. The Journal of Organic Chemistry, 74, 6526–6533. DOI: 10.1021/jo901002d. http://dx.doi.org/10.1021/jo901002d10.1021/jo901002dSuche in Google Scholar PubMed

[33] Verkuijl, B. J. V., Schuur, B., Minnaard, A. J., de Vries, J. G., & Feringa, B. L. (2010). Chiral separation of substituted phenylalanine analogues using chiral palladium phosphine complexes with enantioselective liquid-liquid extraction. Organic and Biomolecular Chemistry, 8, 3045–3054. DOI: 10.1039/b924749a. http://dx.doi.org/10.1039/b924749a10.1039/b924749aSuche in Google Scholar PubMed

[34] Ward, T. J., & Baker, B. A. (2008). Chiral separations. Analytical Chemistry, 80, 4363–4372. DOI: 10.1021/ac800662y. http://dx.doi.org/10.1021/ac800662y10.1021/ac800662ySuche in Google Scholar PubMed

[35] Wasewar, K. L., Shende, D., & Keshav, A. (2011). Reactive extraction of itaconic acid using tri-n-butyl phosphate and aliquat 336 in sunflower oil as a non-toxic diluent. Journal of Chemical Technology and Biotechnology, 86, 319–323. DOI: 10.1002/jctb.2500. http://dx.doi.org/10.1002/jctb.250010.1002/jctb.2500Suche in Google Scholar

[36] Xing, J. M., & Li, F. F. (2012). Chiral separation of mandelic acid by temperature-induced aqueous two-phase system. Journal of Chemical Technology and Biotechnology, 87, 346–350. DOI: 10.1002/jctb.2720. http://dx.doi.org/10.1002/jctb.272010.1002/jctb.2720Suche in Google Scholar

Published Online: 2014-6-24
Published in Print: 2014-10-1

© 2014 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Chemical preparation and applications of silver dendrites
  2. Evaluation of antioxidant activity and DNA cleavage protection effect of naphthyl hydroxamic acid derivatives through conventional and fluorescence microscopic methods
  3. Modelling of ORL1 receptor-ligand interactions
  4. Kinetics of enantioselective liquid-liquid extraction of phenylglycine enantiomers using a BINAP-copper complex as chiral selector
  5. Diffusive transport of Cu(II) ions through thin ion imprinted polymeric membranes
  6. Magnetic mixed matrix membranes in air separation
  7. The use of impregnated perlite as a heterogeneous catalyst for biodiesel production from marula oil
  8. Nitrobenzene degradation by micro-sized iron and electron efficiency evaluation
  9. RP-HPLC-UV-ESI-MS phytochemical analysis of fruits of Conocarpus erectus L.
  10. Residue analysis of fosthiazate in cucumber and soil by QuEChERS and GC-MS
  11. Degradation of polylactide using basic ionic liquid imidazolium acetates
  12. Ring-opening polymerisation of ɛ-caprolactone catalysed by Brønsted acids
  13. Click synthesis by Diels-Alder reaction and characterisation of hydroxypropyl methylcellulose-based hydrogels
  14. Preparation and physical properties of chitosan-coated calcium sulphate whiskers
  15. A facile synthetic route for antineoplastic drug GDC-0449
  16. Two new frameworks for biphenyl-3,3′,5,5′-tetracarboxylic acid and nitrogen-containing organics
  17. Antioxidant and binding properties of methanol extracts from indigo plant leaves
  18. Dithiols as more effective than monothiols in protecting biomacromolecules from free-radical-mediated damage: in vitro oxidative degradation of high-molar-mass hyaluronan
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-014-0571-5/pdf?lang=de
Button zum nach oben scrollen