Home Characterization of LaRhO3 perovskites for dry (CO2) reforming of methane (DRM)
Article
Licensed
Unlicensed Requires Authentication

Characterization of LaRhO3 perovskites for dry (CO2) reforming of methane (DRM)

  • Ted Johansson EMAIL logo , Devendra Pakhare , Daniel Haynes , Victor Abdelsayed , Dushyant Shekhawat and James Spivey
Published/Copyright: May 23, 2014
Become an author with De Gruyter Brill

Abstract

This work reports on the characterization of LaRhO3 perovskite as a catalyst for dry reforming of methane. The catalyst was studied using CH4-temperature programmed reduction (TPR), H2-TPR, and temperature programmed surface reaction (TPSR), and the changes in the crystal structure of the catalyst due to these treatments were studied by X-ray diffraction (XRD). XRD pattern of the freshly calcined perovskites showed the formation of highly crystalline LaRhO3 and La2O3 phases. H2-TPR of the fresh calcined catalyst showed a shoulder at 342°C and a broad peak at 448°C, suggesting that the reduction of Rh in perovskite occurs in multiple steps. XRD pattern of the reduced catalyst suggests complete reduction of the LaRhO3 phase and the formation of metallic Rh and minor amounts of La(OH)3. The CH4-TPR data show qualitatively similar results as H2-TPR, with a shoulder and a broad peak in the same temperature range. Following the H2-TPR up to 950°C, the same batch of catalyst was oxidized by flowing 5 vol. % O2/He up to 500°C and a second H2-TPR (also up to 950°C) was conducted. This second H2-TPR differed significantly from that of the fresh calcined catalyst. The single sharp peak at 163°C in the second H2-TPR suggests a significant change in the catalyst, probably causedby the transformation of about 90 % of the perovskite into Rh/La2O3. This was confirmed by the XRD studies of the catalyst reduced after the oxidation at 500°C. TPSR of the dry reforming reaction on the fresh calcined catalyst showed CO and H2 formation starting at 400°C, with complete consumption of the reactants at 650°C. The uneven consumption of reactants between 400°C and 650°C suggests that reactions other than DRM occur, including reverse water gas shift (RWGS) and the Boudouard reaction (BR), probably as a result of in-situ changes in the catalyst, consistent with the H2-TPR results. TPSR, after a H2-TPR up to 950°C, showed that the dry reforming reaction did not light off until 570°C, which is much higher temperature than the one observed using fresh calcined catalyst. This shows that the uniform sites produced during the 950°C H2-TPR are catalytically less active than those of the fresh calcined catalyst, and that no significant side reactions such as RWGS or the Boudouard reaction occur. This suggests that reduction leads to the formation of a single type of sites which do not catalyze simultaneous side reactions.

[1] Bradford, M. C. J., & Vannice, M. A. (1999). CO2 reforming of CH4. Catalysis Reviews, 41, 1–42. DOI: 10.1081/cr-100101948. http://dx.doi.org/10.1081/CR-10010194810.1081/CR-100101948Search in Google Scholar

[2] Djinović, P., Batista, J., & Pintar, A. (2012). Efficient catalytic abatement of greenhouse gases: Methane reforming with CO2 using a novel and thermally stable Rh-CeO2 catalyst. International Journal of Hydrogen Energy, 37, 2699–2707. DOI: 10.1016/j.ijhydene.2011.10.107. http://dx.doi.org/10.1016/j.ijhydene.2011.10.10710.1016/j.ijhydene.2011.10.107Search in Google Scholar

[3] Gao, J., Hou Z. Y., Lou, H., & Zheng, X. M. (2011). Dry (CO2) reforming. In D. Shekhawat, J. J. Spivey, & D. A. Berry (Eds.), Fuel cells: Technologies for fuel processing (Chapter 7, pp. 191–221). Amsterdam, The Netherlands: Elsevier. DOI: 10.1016/b978-0-444-53563-4.10007-0. http://dx.doi.org/10.1016/B978-0-444-53563-4.10007-010.1016/B978-0-444-53563-4.10007-0Search in Google Scholar

[4] Haynes, D. J., Berry, D. A., Shekhawat, D., & Spivey, J. J. (2008). Catalytic partial oxidation of n-tetradecane using pyrochlores: Effect of Rh and Sr substitution. Catalysis Today, 136, 206–213. DOI: 10.1016/j.cattod.2008.02.012. http://dx.doi.org/10.1016/j.cattod.2008.02.01210.1016/j.cattod.2008.02.012Search in Google Scholar

[5] Kim, J. H., Kim, T. Y., Yoo, J. W., Lee, K. B., & Hong, S. I. (2012). Carbon dioxide reforming of methane to synthesis gas over LaNi1−x CrxO3 perovskite catalysts. Korean Journal of Chemical Engineering, 29, 1329–1335. DOI: 10.1007/s11814-012-0057-5. http://dx.doi.org/10.1007/s11814-012-0057-510.1007/s11814-012-0057-5Search in Google Scholar

[6] Kuznetsov, V. L., Mudrakovskii, I. L., Romanenko, A. V., Pashis, A. V., Mastikhin, V. M., & Yermakov, Yu. I. (1984). Interaction of hydrogen with Rh/La2O3 and Pd/La2O3 catalysts. Reaction Kinetics and Catalysis Letters, 25, 137–141. DOI: 10.1007/bf02076555. http://dx.doi.org/10.1007/BF0207655510.1007/BF02076555Search in Google Scholar

[7] Moradi, G. R., Khosravian, F., & Rahmanzadeh, M. (2012). Effects of partial substitution of Ni by Cu in LaNiO3 perovskite catalyst for dry methane reforming. Chinese Journal of Catalysis, 33, 797–801. DOI: 10.1016/s1872-2067(11)60378-1. http://dx.doi.org/10.1016/S1872-2067(11)60378-110.1016/S1872-2067(11)60378-1Search in Google Scholar

[8] Nematollahi, B., Rezaei, M., Lay, E. N., & Khajenoori, M. (2012). Thermodynamic analysis of combined reforming process using Gibbs energy minimization method: In view of solid carbon formation. Journal of Natural Gas Chemistry, 21, 694–702. DOI: 10.1016/s1003-9953(11)60421-0. http://dx.doi.org/10.1016/S1003-9953(11)60421-010.1016/S1003-9953(11)60421-0Search in Google Scholar

[9] Pakhare, D., Haynes, D., Shekhawat, D., & Spivey, J. (2012). Role of metal substitution in lanthanum zirconate pyrochlores (La2Zr2O7) for dry (CO2) reforming of methane (DRM). Applied Petrochemical Research, 2, 27–35. DOI: 10.1007/s13203-012-0014-6. http://dx.doi.org/10.1007/s13203-012-0014-610.1007/s13203-012-0014-6Search in Google Scholar

[10] Pakhare, D., Shaw, C., Haynes, D., Shekhawat, D., & Spivey, J. (2013a). Effect of reaction temperature on activity of Pt- and Ru-substituted lanthanum zirconate pyrochlores (La2Zr2O7) for dry (CO2) reforming of methane (DRM). Journal of CO 2 Utilization, 1, 37–42. DOI: 10.1016/j.jcou.2013.04.001. http://dx.doi.org/10.1016/j.jcou.2013.04.00110.1016/j.jcou.2013.04.001Search in Google Scholar

[11] Pakhare, D., Wu, H. Y., Narendra, S., Abdelsayed, V., Haynes, D., Shekhawat, D., Berry, D., & Spivey, J. (2013b). Characterization and activity study of the Rh-substituted pyrochlores for CO2 (dry) reforming of CH4. Applied Petrochemical Research, 3, 117–129. DOI: 10.1007/s13203-013-0042-x. http://dx.doi.org/10.1007/s13203-013-0042-x10.1007/s13203-013-0042-xSearch in Google Scholar

[12] Pechini, M. P. (1967). U.S. Patent No. 3,330,697. Washington, D.C., USA: U.S. Patent and Trademark Office. Search in Google Scholar

[13] Peña, M. A., & Fierro, J. L. G. (2001). Chemical structures and performance of perovskite oxides. Chemical Reviews, 101, 1981–2018. DOI: 10.1021/cr980129f. http://dx.doi.org/10.1021/cr980129f10.1021/cr980129fSearch in Google Scholar

[14] Rivas, M. E., Fierro, J. L. G., Goldwasser, M. R., Pietri, E., Pérez-Zurita, M. J., Griboval-Constant, A., & Leclercq, G. (2008). Structural features and performance of LaNi1−x RhxO3 system for the dry reforming of methane. Applied Catalysis A: General, 344, 10–19. DOI: 10.1016/j.apcata.2008.03.023. http://dx.doi.org/10.1016/j.apcata.2008.03.02310.1016/j.apcata.2008.03.023Search in Google Scholar

[15] Spivey, J. J. (2011). Deactivation of reforming catalysts. In D. Shekhawat, J. J. Spivey, & D. A. Berry (Eds.), Fuel cells: Technologies for fuel processing (Chapter 10, pp. 285–315). Amsterdam, The Netherlands: Elsevier. DOI: 10.1016/b978-0-444-53563-4.10010-0. http://dx.doi.org/10.1016/B978-0-444-53563-4.10010-010.1016/B978-0-444-53563-4.10010-0Search in Google Scholar

[16] Tascon, J. M. D., Olivan, A. M. O., Gonzalez Tejuca, L., & Bell, A. T. (1986). A study of reduction and adsorption on LaRhO3. The Journal of Physical Chemistry, 90, 791–795. DOI: 10.1021/j100277a018. http://dx.doi.org/10.1021/j100277a01810.1021/j100277a018Search in Google Scholar

[17] Tsang, S. C., Claridge, J. B., & Green, M. L. H. (1995). Recent advances in the conversion of methane to synthesis gas. Catalysis Today, 23, 3–15. DOI: 10.1016/0920-5861(94)00080-l. http://dx.doi.org/10.1016/0920-5861(94)00080-L10.1016/0920-5861(94)00080-LSearch in Google Scholar

[18] Valderrama, G., Urbina de Navarro, C., & Goldwasser, M. R. (2013). CO2 reforming of CH4 over Co-La-based perovskitetype catalyst precursors. Journal of Power Sources, 234, 31–37. DOI: 10.1016/j.jpowsour.2013.01.142. http://dx.doi.org/10.1016/j.jpowsour.2013.01.14210.1016/j.jpowsour.2013.01.142Search in Google Scholar

[19] Van’T Blik, H. F. J., & Niemantsverdriet, J. W. (1984) Characterization of bimetallic FeRh/SiO2 catalysts by temperature programmed reduction, oxidation and Mössbauer spectroscopy. Applied Catalysis, 10, 155–162. DOI: 10.1016/0166-9834(84)80100-1. http://dx.doi.org/10.1016/0166-9834(84)80100-110.1016/0166-9834(84)80100-1Search in Google Scholar

[20] Voser, P. (2012). The natural gas revolution. Energy Strategy Reviews, 1, 3–4. DOI: 10.1016/j.esr.2011.12.001. http://dx.doi.org/10.1016/j.esr.2011.12.00110.1016/j.esr.2011.12.001Search in Google Scholar

[21] Wang, H. Y., & Ruckenstein, E. (2000). Carbon dioxide reforming of methane to synthesis gas over supported rhodium catalysts: the effect of support. Applied Catalysis A: General, 204, 143–152. DOI: 10.1016/s0926-860x(00)00547-0. http://dx.doi.org/10.1016/S0926-860X(00)00547-010.1016/S0926-860X(00)00547-0Search in Google Scholar

[22] Yamaguchi, A., & Iglesia, E. (2010). Catalytic activation and reforming of methane on supported palladium clusters. Journal of Catalysis, 274, 52–63. DOI: 10.1016/j.jcat.2010.06.001. http://dx.doi.org/10.1016/j.jcat.2010.06.00110.1016/j.jcat.2010.06.001Search in Google Scholar

Published Online: 2014-5-23
Published in Print: 2014-9-1

© 2014 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Environmental catalysis — Topical issue
  2. Structured catalysts for methanol-to-olefins conversion: a review
  3. Diesel soot combustion catalysts: review of active phases
  4. State of the art in catalytic oxidation of chlorinated volatile organic compounds
  5. Effect of zinc introduction on catalytic performance of ZSM-5 in conversion of methanol to light olefins
  6. Mesoporous phosphated and sulphated silica as solid acid catalysts for glycerol acetylation
  7. Valorisation of bio-oil resulting from fast pyrolysis of wood
  8. Microwave hydrothermal synthesis, characterisation, and catalytic performance of Zn1−x MnxO in cellulose conversion
  9. Montmorillonite intercalated with SiO2, SiO2-Al2O3 or SiO2-TiO2 pillars by surfactant-directed method as catalytic supports for DeNOx process
  10. Fe- and Cu-oxides supported on γ-Al2O3 as catalysts for the selective catalytic reduction of NO with ethanol. Part I: catalyst preparation, characterization, and activity
  11. Characterization of LaRhO3 perovskites for dry (CO2) reforming of methane (DRM)
  12. Visible light photoelectrocatalytic degradation of rhodamine B using a dye-sensitised TiO2 electrode
  13. CdS/TiO2 composite films for methylene blue photodecomposition under visible light irradiation and non-photocorrosion of cadmium sulfide
  14. Photocatalytic air-cleaning using TiO2 nanoparticles in porous silica substrate
  15. Cost-effectiveness analysis to assess commercial TiO2 photocatalysts for acetaldehyde degradation in air
  16. Solid waste decontamination by thermal desorption and catalytic oxidation methods
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-014-0566-2/pdf?lang=en
Scroll to top button