Home Effect of zinc introduction on catalytic performance of ZSM-5 in conversion of methanol to light olefins
Article
Licensed
Unlicensed Requires Authentication

Effect of zinc introduction on catalytic performance of ZSM-5 in conversion of methanol to light olefins

  • Su-Hong Zhang EMAIL logo , Zhi-Xian Gao , Shao-Jun Qing , Sheng-Yu Liu and Yan Qiao
Published/Copyright: May 23, 2014
Become an author with De Gruyter Brill

Abstract

The effect of Zn on the catalytic performance of ZSM-5 in the methanol-to-olefin conversion was investigated. The samples were characterised by X-ray diffraction, N2 adsorption, FTIR, temperature-programmed desorption of ammonia and water, and Py-IR. The experimental results revealed Znmodified ZSM-5 to show a lower selectivity to light olefin at the higher reaction temperature of 520°C but a higher selectivity to light olefin at lower temperatures. As a comparison, the catalytic performance of Ca-modified ZSM-5 for the methanol conversion is also given. From the above results, it is concluded that Zn may play another role in the methanol conversion in addition to tuning the surface acidic property after modification.

[1] Al-Jarallah, A. M., El-Nafaty, U. A., & Abdillahi, M. M. (1997). Effects of metal impregnation on the activity, selectivity and deactivation of a high silica MFI zeolite when converting methanol to light alkenes. Applied Catalysis A: General, 154, 117–127. DOI: 10.1016/s0926-860x(96)00379-1. http://dx.doi.org/10.1016/S0926-860X(96)00379-110.1016/S0926-860X(96)00379-1Search in Google Scholar

[2] Anthony, R. G., & Singh, B. B. (1980). Kinetic analysis of complex reaction systems-methanol conversion to low molecular weight olefins. Chemical Engineering Communications, 6, 215–224. DOI: 10.1080/00986448008912531. http://dx.doi.org/10.1080/0098644800891253110.1080/00986448008912531Search in Google Scholar

[3] Bjørgen, M., Svelle, S., Joensen, F., Nerlov, J., Kolboe, S., Bonino, F., Palumbo, L., Bordiga, S., & Olsbye, U. (2007). Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: On the origin of the olefinic species. Journal of Catalysis, 249, 195–207. DOI: 10.1016/j.jcat.2007.04.006. http://dx.doi.org/10.1016/j.jcat.2007.04.00610.1016/j.jcat.2007.04.006Search in Google Scholar

[4] Bleken, F. L., Chavan, S., Olsbye, U., Boltz, M., Ocampo, F., & Louis, B. (2012). Conversion of methanol into light olefins over ZSM-5 zeolite: Strategy to enhance propene selectivity. Applied Catalysis A: General, 447–448, 178–185. DOI: 10.1016/j.apcata.2012.09.025. http://dx.doi.org/10.1016/j.apcata.2012.09.02510.1016/j.apcata.2012.09.025Search in Google Scholar

[5] Chang, C. D. (1984). Methanol conversion to light olefins. Catalysis Reviews: Science and Engineering, 26, 323–345. DOI: 10.1080/01614948408064716. http://dx.doi.org/10.1080/0161494840806471610.1080/01614948408064716Search in Google Scholar

[6] Chang, C. D., Chu, C. T. W., & Socha, R. F. (1984). Methanol conversion to olefins over ZSM-5: I. Effect of temperature and zeolite SiO2/Al2O3. Journal of Catalysis, 86, 289–296. DOI: 10.1016/0021-9517(84)90374-9. http://dx.doi.org/10.1016/0021-9517(84)90374-910.1016/0021-9517(84)90374-9Search in Google Scholar

[7] Dehertog, W. J. H., & Froment, G. F. (1991). Production of light alkenes from methanol on ZSM-5 catalysts. Applied Catalysis, 71, 153–165. DOI: 10.1016/0166-9834(91)85012-k. http://dx.doi.org/10.1016/0166-9834(91)85012-K10.1016/0166-9834(91)85012-KSearch in Google Scholar

[8] El-Malki, El-M., van Santen, R. A., & Sachtler, W. M. H. (1999). Introduction of Zn, Ga, and Fe into HZSM-5 cavities by sublimation: Identification of acid sites. The Journal of Physical Chemistry B, 103, 4611–4622. DOI: 10.1021/jp990116l. http://dx.doi.org/10.1021/jp990116l10.1021/jp990116lSearch in Google Scholar

[9] Inui, T., Matsuda, H., Yamase, O., Nagata, H., Fukuda, K., Ukawa, T., & Miyamoto, A. (1986). Highly selective synthesis of light olefins from methanol on a novel Fe-silicate. Journal of Catalysis, 98, 491–501. DOI: 10.1016/0021-9517(86)90337-4. http://dx.doi.org/10.1016/0021-9517(86)90337-410.1016/0021-9517(86)90337-4Search in Google Scholar

[10] Jansen, J. C., van der Gaag, F. J., & van Beckum, H. (1984). Identification of ZSM-type and other 5-ring containing zeolites by i.r. spectroscopy. Zeolites, 4, 369–372. DOI: 10.1016/0144-2449(84)90013-7. http://dx.doi.org/10.1016/0144-2449(84)90013-710.1016/0144-2449(84)90013-7Search in Google Scholar

[11] Kaarsholm, M., Joensen, F., Nerlov, J., Cenni, R., Chaouki, J., & Patience, G. S. (2007). Phosphorous modified ZSM-5: Deactivation and product distribution for MTO. Chemical Engineering Science, 62, 5527–5532. DOI: 10.1016/j.ces.2006.12.076. http://dx.doi.org/10.1016/j.ces.2006.12.07610.1016/j.ces.2006.12.076Search in Google Scholar

[12] Kawai, T., Jiang, K. M., & Ishikawa, T. (1996). FT-IR and TPD studies of adsorbed pyridine on Re2O7/Al2O3 catalysts. Journal of Catalysis, 159, 288–295. DOI: 10.1006/jcat.1996.0090. http://dx.doi.org/10.1006/jcat.1996.009010.1006/jcat.1996.0090Search in Google Scholar

[13] Keil, F. J. (1999). Methanol-to-hydrocarbons: process technology. Microporous and Mesoporous Materials, 29, 49–66. DOI: 10.1016/s1387-1811(98)00320-5. http://dx.doi.org/10.1016/S1387-1811(98)00320-510.1016/S1387-1811(98)00320-5Search in Google Scholar

[14] Liu, Z., Sun, C., Wang, G., Wang, Q., & Cai, G. (2000). New progress in R&D of lower olefin synthesis. Fuel Processing Technology, 62, 161–172. DOI: 10.1016/s0378-3820(99)00117-4. http://dx.doi.org/10.1016/S0378-3820(99)00117-410.1016/S0378-3820(99)00117-4Search in Google Scholar

[15] Lubango, L. M., & Scurrell, M. S. (2002). Light alkanes aromatization to BTX over Zn-ZSM-5 catalysts: Enhancements in BTX selectivity by means of a second transition metal ion. Applied Catalysis A: General, 235, 265–272. DOI: 10.1016/s0926-860x(02)00271-5. http://dx.doi.org/10.1016/S0926-860X(02)00271-510.1016/S0926-860X(02)00271-5Search in Google Scholar

[16] Parry, E. P. (1963). An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity. Journal of Catalysis, 2, 371–379. DOI: 10.1016/0021-9517(63)90102-7. 10.1016/0021-9517(63)90102-7Search in Google Scholar

[17] Prinz, D., & Riekert, L. (1988). Formation of ethene and propene from methanol on zeolite ZSM-5: I. Investigation of rate and selectivity in a batch reactor. Applied Catalysis, 37, 139–154. DOI: 10.1016/s0166-9834(00)80757-5. http://dx.doi.org/10.1016/S0166-9834(00)80757-510.1016/S0166-9834(00)80757-5Search in Google Scholar

[18] Spivey, J. J., Froment, G. F., Dehertog, W. J. H., & Marchi, A. J. (1992). Zeolite catalysis in the conversion of methanol into olefins. Catalysis, 9, 1–64. DOI: 10.1039/9781847553218-00001. http://dx.doi.org/10.1039/9781847553218-0000110.1039/9781847553218-00001Search in Google Scholar

[19] Stöcker, M. (1999). Methanol-to-hydrocarbons: catalytic material and their behavior. Microporous and Mesoporous Materials, 29, 3–48. DOI: 10.1016/s1387-1811(98)00319-9. http://dx.doi.org/10.1016/S1387-1811(98)00319-910.1016/S1387-1811(98)00319-9Search in Google Scholar

[20] Svelle, S., Joensen, F., Nerlov, J., Olsbye, U., Lillerud, K. P., Kolboe, S., & Bjørgen, M. (2006). Conversion of methanol into hydrocarbons over zeolite H-ZSM-5: Ethene formation is mechanistically separated from the formation of higher alkenes. Journal of the American Chemical Society, 128, 14770–14771. DOI: 10.1021/ja065810a. http://dx.doi.org/10.1021/ja065810a10.1021/ja065810aSearch in Google Scholar PubMed

[21] Triwahyono, S., Jalil, A. A., Mukti, R. R., Musthofa, M., Razali, N. A. M., & Aziz, M. A. A. (2011). Hydrogen spillover behavior of Zn/HZSM-5 showing catalytically active protonic acid sites in the isomerization of n-pentane. Applied Catalysis A: General, 407, 91–99. DOI: 10.1016/j.apcata.2011.08.027. http://dx.doi.org/10.1016/j.apcata.2011.08.02710.1016/j.apcata.2011.08.027Search in Google Scholar

[22] Trong On, D., Kaliaguine, S., & Bonneviot, L. (1995). Titanium boralites with MFI structure characterized using XRD, XANES, IR, and UV-visible techniques: Effect of hydrogen peroxide on the preparation. Journal of Catalysis, 157, 235–243. DOI: 10.1006/jcat.1995.1284. http://dx.doi.org/10.1006/jcat.1995.128410.1006/jcat.1995.1284Search in Google Scholar

[23] Valle, B., Alonso, A., Atutxa, A., Gayubo, A. G., & Bilbao, J. (2005). Effect of nickel incorporation on the acidity and stability of HZSM-5 zeolite in the MTO process. Catalysis Today, 106, 118–122. DOI: 10.1016/j.cattod.2005.07.132. http://dx.doi.org/10.1016/j.cattod.2005.07.13210.1016/j.cattod.2005.07.132Search in Google Scholar

[24] Wu, M. M., & Kaeding, W. W. (1984). Conversion of methanol to hydrocarbons: II. Reaction paths for olefin formation over HZSM-5 zeolite catalyst. Journal of Catalysis, 88, 478–489. DOI: 10.1016/0021-9517(84)90025-3. http://dx.doi.org/10.1016/0021-9517(84)90025-310.1016/0021-9517(84)90025-3Search in Google Scholar

[25] Wu, X., Abraha, M. G., & Anthony, R. G. (2004). Methanol conversion on SAPO-34: reaction condition for fixed-bed reactor. Applied Catalysis A: General, 260, 63–69. DOI: 10.1016/j.apcata.2003.10.011. http://dx.doi.org/10.1016/j.apcata.2003.10.01110.1016/j.apcata.2003.10.011Search in Google Scholar

[26] Xue, B., Li, Y., & Deng, L. (2009). Selective synthesis of pxylene by alkylation of toluene with dimethyl carbonate over MgO-modified MCM-22. Catalysis Communications, 10, 1609–1614. DOI: 10.1016/j.catcom.2009.04.028. http://dx.doi.org/10.1016/j.catcom.2009.04.02810.1016/j.catcom.2009.04.028Search in Google Scholar

[27] Zhang, S., Zhang, B., Gao, Z., & Han, Y. (2010). Methanol to olefin over Ca-modified HZSM-5 zeolites. Industrial & Engineering Chemistry Research, 49, 2103–2106. DOI: 10.1021/ie901446m. http://dx.doi.org/10.1021/ie901446m10.1021/ie901446mSearch in Google Scholar

Published Online: 2014-5-23
Published in Print: 2014-9-1

© 2014 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Environmental catalysis — Topical issue
  2. Structured catalysts for methanol-to-olefins conversion: a review
  3. Diesel soot combustion catalysts: review of active phases
  4. State of the art in catalytic oxidation of chlorinated volatile organic compounds
  5. Effect of zinc introduction on catalytic performance of ZSM-5 in conversion of methanol to light olefins
  6. Mesoporous phosphated and sulphated silica as solid acid catalysts for glycerol acetylation
  7. Valorisation of bio-oil resulting from fast pyrolysis of wood
  8. Microwave hydrothermal synthesis, characterisation, and catalytic performance of Zn1−x MnxO in cellulose conversion
  9. Montmorillonite intercalated with SiO2, SiO2-Al2O3 or SiO2-TiO2 pillars by surfactant-directed method as catalytic supports for DeNOx process
  10. Fe- and Cu-oxides supported on γ-Al2O3 as catalysts for the selective catalytic reduction of NO with ethanol. Part I: catalyst preparation, characterization, and activity
  11. Characterization of LaRhO3 perovskites for dry (CO2) reforming of methane (DRM)
  12. Visible light photoelectrocatalytic degradation of rhodamine B using a dye-sensitised TiO2 electrode
  13. CdS/TiO2 composite films for methylene blue photodecomposition under visible light irradiation and non-photocorrosion of cadmium sulfide
  14. Photocatalytic air-cleaning using TiO2 nanoparticles in porous silica substrate
  15. Cost-effectiveness analysis to assess commercial TiO2 photocatalysts for acetaldehyde degradation in air
  16. Solid waste decontamination by thermal desorption and catalytic oxidation methods
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-014-0536-8/pdf?lang=en
Scroll to top button