Home Fe- and Cu-oxides supported on γ-Al2O3 as catalysts for the selective catalytic reduction of NO with ethanol. Part I: catalyst preparation, characterization, and activity
Article
Licensed
Unlicensed Requires Authentication

Fe- and Cu-oxides supported on γ-Al2O3 as catalysts for the selective catalytic reduction of NO with ethanol. Part I: catalyst preparation, characterization, and activity

  • Denis Worch EMAIL logo , Wladimir Suprun and Roger Gläser
Published/Copyright: May 23, 2014
Become an author with De Gruyter Brill

Abstract

Fe- and Cu-oxides supported on γ-alumina (γ-Al2O3; metal loading of 3 mass %) were investigated as alternative catalysts to the conventional Ag-based system in the selective catalytic reduction of NO with ethanol (EtOH-SCR). The catalysts were characterized by elemental analysis, N2 sorption, X-ray diffraction, temperature-prgrammed desorption of NH3, temperature-programmed reduction with H2, diffuse reflectance UV-VIS (DR-UV-VIS) spectroscopy, and compared with 3 mass % Ag/γ-Al2O3 as a reference catalyst. Catalytic experiments were carried out between 423 K and 773 K in the steady state and by temperature-programmed surface reaction (TPSR) experiments. For all catalysts, the highest NO conversion (900 ppm (ppm = parts of the mixture component per million parts of all mixture components) NO, 900 ppm EtOH, 0.5 vol. % H2O, 4 vol. % O2 in He) was found at 573 K. While 84 % of NO were converted over the Ag-based catalysts, only 20–60 % NO conversion was observed for the Fe- and Cu-containing catalysts. Total oxidation of ethanol as an unwanted side reaction occurs over 3 mass % Cu on γ-Al2O3 already at 573 K, whereas the highest activity of 3 mass % Fe on γ-Al2O3 for this conversion was reached at 743 K. For lower temperatures, partial oxidation of ethanol leads to organic by-products which can act as active intermediates in EtOH-SCR. TPSR experiments show that ethanol reacts over both the Fe- and the Cu-based catalysts to organic by-products, such as ethene or acetaldehyde, which affect the EtOH-SCR reaction.

[1] Águila, G., Gracia, F., Cortés, J., & Araya, P. (2008). Effect of copper species and the presence of reaction products on the activity of methane oxidation on supported CuO catalysts. Applied Catalysis B: Environmental, 77, 325–338. DOI: 10.1016/j.apcatb.2007.08.002. http://dx.doi.org/10.1016/j.apcatb.2007.08.00210.1016/j.apcatb.2007.08.002Search in Google Scholar

[2] Arena, F., Gatti, G., Stievano, L., Martra, G., Coluccia, S., Frusteri, F., Spadaro, L., & Parmaliana, A. (2006). Activity pattern of low-loaded FeOx/SiO2 catalysts in the selective oxidation of C1 and C3 alkanes with oxygen. Catalysis Today, 117, 75–79. DOI: 10.1016/j.cattod.2006.05.047. http://dx.doi.org/10.1016/j.cattod.2006.05.04710.1016/j.cattod.2006.05.047Search in Google Scholar

[3] Baik, J. H., Yim, S. D., Nam, I. S., Mok, Y. S., Lee, J. H., Cho, B. K., & Oh, S. H. (2004). Control of NOx emissions from diesel engine by selective catalytic reduction (SCR) with urea. Topics in Catalysis, 30–31, 37–41. DOI: 10.1023/b:toca.0000029725.88068.97. http://dx.doi.org/10.1023/B:TOCA.0000029725.88068.9710.1023/B:TOCA.0000029725.88068.97Search in Google Scholar

[4] Barth, R., Falcone, J. S., Jr., Vorce, S., McLennan, J., Outland, B., & Arnoth, E. (2002). Cobalt-silica interaction and the dehydrogenation of 2-propanol. Catalysis Communications, 3, 135–139. DOI: 10.1016/s1566-7367(02)00070-5. http://dx.doi.org/10.1016/S1566-7367(02)00070-510.1016/S1566-7367(02)00070-5Search in Google Scholar

[5] Bion, N., Saussey, J., Haneda, M., & Daturi, M. (2003). Study by in situ FTIR spectroscopy of the SCR of NOx, by ethanol on Ag/Al2O3-Evidence of the role of isocyanate species. Journal of Catalysis, 217, 47–58. DOI: 10.1016/s0021-9517(03)00035-6. 10.1016/S0021-9517(03)00035-6Search in Google Scholar

[6] Bogdanchikova, N., Meunier, F. C., Avalos-Borja, M., Breen, J. P., & Pestryakov, A. (2002). On the nature of the silver phases of Ag/Al2O3 catalysts for reactions involving nitric oxide. Applied Catalysis B: Environmental, 36, 287–297. DOI: 10.1016/s0926-3373(01)00286-7. http://dx.doi.org/10.1016/S0926-3373(01)00286-710.1016/S0926-3373(01)00286-7Search in Google Scholar

[7] Bordiga, S., Buzzoni, R., Geobaldo, F., Lamberti, C., Giamello, E., Zecchina, A., Leofanti, G., Petrini, G., Tozzola, G., & Vlaic, G. (1996). Structure and reactivity of framework and extraframework iron in Fe-silicalite as investigated by spectroscopic and physicochemical methods. Journal of Catalysis, 158, 486–501. DOI: 10.1006/jcat.1996.0048. http://dx.doi.org/10.1006/jcat.1996.004810.1006/jcat.1996.0048Search in Google Scholar

[8] Boutros, M., Trichard, J. M., & Da Costa, P. (2009). Silver supported mesoporous SBA-15 as potential catalysts for SCR NOx by ethanol. Applied Catalysis B: Environmental, 91, 640–648. DOI: 10.1016/j.apcatb.2009.07.004. http://dx.doi.org/10.1016/j.apcatb.2009.07.00410.1016/j.apcatb.2009.07.004Search in Google Scholar

[9] Brandenberger, S., Kröcher, O., Tissler, A., & Althoff, R. (2010). The determination of the activities of different iron species in Fe-ZSM-5 for SCR of NO by NH3. Applied Catalysis B: Environmental, 95, 348–357. DOI: 10.1016/j.apcatb.2010.01.013. http://dx.doi.org/10.1016/j.apcatb.2010.01.01310.1016/j.apcatb.2010.01.013Search in Google Scholar

[10] Chary, K. V. R., Seela, K. K., Naresh, D., & Ramakanth, P. (2008). Characterization and reductive amination of cyclohexanol and cyclohexanone over Cu/ZrO2 catalysts. Catalysis Communications, 9, 75–81. DOI: 10.1016/j.catcom.2007.05.016. http://dx.doi.org/10.1016/j.catcom.2007.05.01610.1016/j.catcom.2007.05.016Search in Google Scholar

[11] da Silva, R., Cataluña, R., & Martínez-Arias, A. (2009). Selective catalytic reduction of NOx using propene and ethanol over catalysts of Ag/Al2O3 prepared by microemulsion and promotional effect of hydrogen. Catalysis Today, 143, 242–246. DOI: 10.1016/j.cattod.2008.10.025. http://dx.doi.org/10.1016/j.cattod.2008.10.02510.1016/j.cattod.2008.10.025Search in Google Scholar

[12] Denis, P. A., Ventura, O. N., Le, H. T., & Nguyen, M. T. (2003). Density functional study of the decomposition pathways of nitroethane and 2-nitropropane. Physical Chemistry Chemical Physics, 5, 1730–1738. DOI: 10.1039/b300275f. http://dx.doi.org/10.1039/b300275f10.1039/b300275fSearch in Google Scholar

[13] Djerboua, F., Benachour, D., & Touroude, R. (2005). On the performance of a highly loaded Co/SiO2 catalyst in the gas phase hydrogenation of crotonaldehyde: Thermal treatments-catalyst structure-selectivity relationship. Applied Catalysis A: General, 282, 123–133. DOI: 10.1016/j.apcata.2004.12.016. http://dx.doi.org/10.1016/j.apcata.2004.12.01610.1016/j.apcata.2004.12.016Search in Google Scholar

[14] Dzwigaj, S., Janas, J., Machej, T., & Che, M. (2007). Selective catalytic reduction of NO by alcohols on Coand Fe-Siβ catalysts. Catalysis Today, 119, 133–136. DOI: 10.1016/j.cattod.2006.08.055. http://dx.doi.org/10.1016/j.cattod.2006.08.05510.1016/j.cattod.2006.08.055Search in Google Scholar

[15] Dzwigaj, S., Janas, J., Mizera, J., Gurgul, J., Socha, R. P., & Che, M. (2008). Incorporation of copper in SiBEA zeolite as isolated lattice mononuclear Cu(II) species and its role in selective catalytic reduction of NO by ethanol. Catalysis Letters, 126, 36–42. DOI: 10.1007/s10562-008-9675-2. http://dx.doi.org/10.1007/s10562-008-9675-210.1007/s10562-008-9675-2Search in Google Scholar

[16] Dzwigaj, S., Janas, J., Gurgul, J., Socha, R. P., Shishido, T., & Che, M. (2009a). Do Cu(II) ions need Al atoms in their environment to make CuSiBEA active in the SCR of NO by ethanol or propane? A spectroscopy and catalysis study. Applied Catalysis B: Environmental, 85, 131–138. DOI: 10.1016/j.apcatb.2008.07.003. http://dx.doi.org/10.1016/j.apcatb.2008.07.00310.1016/j.apcatb.2008.07.003Search in Google Scholar

[17] Dzwigaj, S., Janas, J., Rojek, W., Stievano, L., Wagner, F. E., Averseng, F., & Che, M. (2009b). Effect of iron impurities on the catalytic activity of BEA, MOR and MFI zeolites in the SCR of NO by ethanol. Applied Catalysis B: Environmental, 86, 45–52. DOI: 10.1016/j.apcatb.2008.07.017. http://dx.doi.org/10.1016/j.apcatb.2008.07.01710.1016/j.apcatb.2008.07.017Search in Google Scholar

[18] Flura, A., Can, F., Courtois, X., Royer, S., & Duprez, D. (2012). High-surface-area zinc aluminate supported silver catalysts for low-temperature SCR of NO with ethanol. Applied Catalysis B: Environmental, 126, 275–289. DOI: 10.1016/j.apcatb.2012.07.006. http://dx.doi.org/10.1016/j.apcatb.2012.07.00610.1016/j.apcatb.2012.07.006Search in Google Scholar

[19] Forzatti, P., Nova, I., & Tronconi, E. (2009). Enhanced NH3 selective catalytic reduction for NOx abatement. Angewandte Chemie International Edition, 48, 8366–8368. DOI: 10.1002/anie.200903857. http://dx.doi.org/10.1002/anie.20090385710.1002/anie.200903857Search in Google Scholar PubMed

[20] Forzatti, P., Lietti, L., Nova, I., & Tronconi, E. (2010). Diesel NOx aftertreatment catalytic technologies: Analogies in LNT and SCR catalytic chemistry. Catalysis Today, 151, 202–211. DOI: 10.1016/j.cattod.2010.02.025. http://dx.doi.org/10.1016/j.cattod.2010.02.02510.1016/j.cattod.2010.02.025Search in Google Scholar

[21] Furusawa, T., Seshan, K., Lercher, J. A., Lefferts, L., & Aika, K. I. (2002). Selective reduction of NO to N2 in the presence of oxygen over supported silver catalysts. Applied Catalysis B: Environmental, 37, 205–216. DOI: 10.1016/s0926-3373(01)00337-x. http://dx.doi.org/10.1016/S0926-3373(01)00337-X10.1016/S0926-3373(01)00337-XSearch in Google Scholar

[22] Gac, W., Derylo-Marczewska, A., Pasieczna-Patkowska, S., Popivnyak, N., & Zukocinski, G. (2007). The influence of the preparation methods and pretreatment conditions on the properties of Ag-MCM-41 catalysts. Journal of Molecular Catalysis A: Chemical, 268, 15–23. DOI: 10.1016/j.molcata.2006.12.002. http://dx.doi.org/10.1016/j.molcata.2006.12.00210.1016/j.molcata.2006.12.002Search in Google Scholar

[23] Giecko, G., Borowiecki, T., Gac, W., & Kruk, J. (2008). Fe2O3/Al2O3 catalysts for the N2O decomposition in the nitric acid industry. Catalysis Today, 137, 403–409. DOI: 10.1016/j.cattod.2008.02.008. http://dx.doi.org/10.1016/j.cattod.2008.02.00810.1016/j.cattod.2008.02.008Search in Google Scholar

[24] He, H., & Yu, Y. B. (2005). Selective catalytic reduction of NOx over Ag/Al2O3 catalyst: from reaction mechanism to diesel engine test. Catalysis Today, 100, 37–47. DOI: 10.1016/j.cattod.2004.11.006. http://dx.doi.org/10.1016/j.cattod.2004.11.00610.1016/j.cattod.2004.11.006Search in Google Scholar

[25] He, H., Zhang, X. L., Wu, Q., Zhang, C. B., & Yu, Y. B. (2008). Review of Ag/Al2O3-reductant system in the selective catalytic reduction of NOx. Catalysis Surveys from Asia, 12, 38–55. DOI: 10.1007/s10563-007-9038-9. http://dx.doi.org/10.1007/s10563-007-9038-910.1007/s10563-007-9038-9Search in Google Scholar

[26] He, H., Li, Y., Zhang, X. L., Yu, Y. B., & Zhang, C. B. (2010). Precipitable silver compound catalysts for the selective catalytic reduction of NOx by ethanol. Applied Catalysis A: General, 375, 258–264. DOI: 10.1016/j.apcata.2010.01.002. http://dx.doi.org/10.1016/j.apcata.2010.01.00210.1016/j.apcata.2010.01.002Search in Google Scholar

[27] Huang, D. L., Thi, T. H. D., Engeldinger, J., Schneider, M., Radnik, J., Richter, M., & Martin, A. (2011). TPR investigations on the reducibility of Cu supported on Al2O3, zeolite Y and SAPO-5. Journal of Solid State Chemistry, 184, 1915–1923. DOI: 10.1016/j.jssc.2011.05.042. http://dx.doi.org/10.1016/j.jssc.2011.05.04210.1016/j.jssc.2011.05.042Search in Google Scholar

[28] Janas, J., Machej, T., Gurgul, J., Socha, R. P., Che, M., & Dzwigaj, S. (2007). Effect of Co content on the catalytic activity of CoSiBEA zeolite in the selective catalytic reduction of NO with ethanol: Nature of the cobalt species. Applied Catalysis B: Environmental, 75, 239–248. DOI: 10.1016/j.apcatb.2007.07.029. http://dx.doi.org/10.1016/j.apcatb.2007.07.02910.1016/j.apcatb.2007.07.029Search in Google Scholar

[29] Janas, J., Gurgul, J., Socha, R. P., & Dzwigaj, S. (2009a). Effect of Cu content on the catalytic activity of CuSiBEA zeolite in the SCR of NO by ethanol: Nature of the copper species. Applied Catalysis B: Environmental, 91, 217–224. DOI: 10.1016/j.apcatb.2009.05.028. http://dx.doi.org/10.1016/j.apcatb.2009.05.02810.1016/j.apcatb.2009.05.028Search in Google Scholar

[30] Janas, J., Gurgul, J., Socha, R. P., Shishido, T., Che, M., & Dzwigaj, S. (2009b). Selective catalytic reduction of NO by ethanol: Speciation of iron and “structure-properties” relationship in FeSiBEA zeolite. Applied Catalysis B: Environmental, 91, 113–122. DOI: 10.1016/j.apcatb.2009.05.013. http://dx.doi.org/10.1016/j.apcatb.2009.05.01310.1016/j.apcatb.2009.05.013Search in Google Scholar

[31] Janas, J., Shishido, T., Che, M., & Dzwigaj, S. (2009c). Role of tetrahedral Co(II) sites of CoSiBEA zeolite in the selective catalytic reduction of NO: XRD, UV-vis, XAS and catalysis study. Applied Catalysis B: Environmental, 89, 196–203. DOI: 10.1016/j.apcatb.2008.11.028. http://dx.doi.org/10.1016/j.apcatb.2008.11.02810.1016/j.apcatb.2008.11.028Search in Google Scholar

[32] Janas, J., & Dzwigaj, S. (2011). Physico-chemical properties of FeAlBEA and FeSiBEA zeolites and their catalytic activity in the SCR of NO with ethanol or methane. Catalysis Today, 176, 272–276. DOI: 10.1016/j.cattod.2010.12.012. http://dx.doi.org/10.1016/j.cattod.2010.12.01210.1016/j.cattod.2010.12.012Search in Google Scholar

[33] Johnson, T. V. (2009). Review of diesel emissions and control. International Journal of Engine Research, 10, 275–285. DOI: 10.1243/14680874jer04009. http://dx.doi.org/10.1243/14680874JER0400910.1243/14680874JER04009Search in Google Scholar

[34] Johnson, W. L., II., Fisher, G. B., & Toops, T. J. (2012). Mechanistic investigation of ethanol SCR of NOx over Ag/Al2O3. Catalysis Today, 184, 166–177. DOI: 10.1016/j.cattod.2011.12.002. http://dx.doi.org/10.1016/j.cattod.2011.12.00210.1016/j.cattod.2011.12.002Search in Google Scholar

[35] Kim, Y. C., Park, N. C., Shin, J. S., Lee, S. R., Lee, Y. J., & Moon, D. J. (2003). Partial oxidation of ethylene to ethylene oxide over nanosized Ag/α-Al2O3 catalysts. Catalysis Today, 87, 153–162. DOI: 10.1016/j.cattod.2003.09.012. http://dx.doi.org/10.1016/j.cattod.2003.09.01210.1016/j.cattod.2003.09.012Search in Google Scholar

[36] Kosslick, H., Lischke, G., Landmesser, H., Parlitz, B., Storek, W., & Fricke, R. (1998). Acidity and catalytic behavior of substituted MCM-48. Journal of Catalysis, 176, 102–114. DOI: 10.1006/jcat.1998.2015. http://dx.doi.org/10.1006/jcat.1998.201510.1006/jcat.1998.2015Search in Google Scholar

[37] Kröcher, O., & Brandenberger, S. (2012). Active sites, deactivation and stabilization of Fe-ZSM-5 for the selective catalytic reduction (SCR) of NO with NH3. Chimia, 66, 687–693. DOI: 10.2533/chimia.2012.687. http://dx.doi.org/10.2533/chimia.2012.68710.2533/chimia.2012.687Search in Google Scholar PubMed

[38] Kumar, M. S., Schwidder, M., Grünert, W., & Brückner, A. (2004). On the nature of different iron sites and their catalytic role in Fe-ZSM-5 DeNOx catalysts: new insights by a combined EPR and UV/VIS spectroscopic approach. Journal of Catalysis, 227, 384–397. DOI: 10.1016/j.jcat.2004.08.003. http://dx.doi.org/10.1016/j.jcat.2004.08.00310.1016/j.jcat.2004.08.003Search in Google Scholar

[39] Kwak, J. H., Tran, D., Burton, S. D., Szanyi, J., Lee, J. H., & Peden, C. H. F. (2012). Effects of hydrothermal aging on NH3-SCR reaction over Cu/zeolites. Journal of Catalysis, 287, 203–209. DOI: 10.1016/j.jcat.2011.12.025. http://dx.doi.org/10.1016/j.jcat.2011.12.02510.1016/j.jcat.2011.12.025Search in Google Scholar

[40] Kyriienko, P., Popovych, N., Soloviev, S., Orlyk, S., & Dzwigaj, S. (2013). Remarkable activity of Ag/Al2O3/cordierite catalysts in SCR of NO with ethanol and butanol. Applied Catalysis B: Environmental, 140, 691–699. DOI: 10.1016/j.apcatb.2013.04.067. http://dx.doi.org/10.1016/j.apcatb.2013.04.06710.1016/j.apcatb.2013.04.067Search in Google Scholar

[41] L’vov, B. V. (1999). Kinetics and mechanism of thermal decomposition of silver oxide. Thermochimica Acta, 333, 13–19. DOI: 10.1016/s0040-6031(99)00085-4. http://dx.doi.org/10.1016/S0040-6031(99)00085-410.1016/S0040-6031(99)00085-4Search in Google Scholar

[42] Lee, J. H., Schmieg, S. J., & Oh, S. H. (2008). Improved NOx reduction over the staged Ag/Al2O3 catalyst system. Applied Catalysis A: General, 342, 78–86. DOI: 10.1016/j.apcata.2008.03.012. http://dx.doi.org/10.1016/j.apcata.2008.03.01210.1016/j.apcata.2008.03.012Search in Google Scholar

[43] Liu, I. O. Y., & Cant, N. W. (2005). The reactions of nitroalkanes over Cu-MFI and Fe-MFI catalysts under hydrocarbonselective catalytic reduction conditions. Journal of Catalysis A: General, 230, 123–132. DOI: 10.1016/j.jcat.2004.11.001. http://dx.doi.org/10.1016/j.jcat.2004.11.00110.1016/j.jcat.2004.11.001Search in Google Scholar

[44] López-Suárez, F. E., Bueno-López, A., & Illán-Gámez, M. J. (2008). Cu/Al2O3 catalysts for soot oxidation: Copper loading effect. Applied Catalysis B: Environmental, 84, 651–658. DOI: 10.1016/j.apcatb.2008.05.019. http://dx.doi.org/10.1016/j.apcatb.2008.05.01910.1016/j.apcatb.2008.05.019Search in Google Scholar

[45] Mhadeshwar, A. B., Winkler, B. H., Eiteneer, B., & Hancu, D. (2009). Microkinetic modeling for hydrocarbon (HC)-based selective catalytic reduction (SCR) of NOx on a silver-based catalyst. Applied Catalysis B: Environmental, 89, 229–238. DOI: 10.1016/j.apcatb.2009.02.012. http://dx.doi.org/10.1016/j.apcatb.2009.02.01210.1016/j.apcatb.2009.02.012Search in Google Scholar

[46] Moos, R. (2010). Catalysts as sensors-a promising novel approach in automotive exhaust gas aftertreatment. Sensors, 10, 6773–6787. DOI: 10.3390/s100706773. http://dx.doi.org/10.3390/s10070677310.3390/s100706773Search in Google Scholar

[47] Musi, A., Massiani, P., Brouri, D., Trichard, J. M., & Da Costa, P. (2009). On the characterisation of silver species for SCR of NOx with ethanol. Catalysis Letters, 128, 25–30. DOI: 10.1007/s10562-008-9694-z. http://dx.doi.org/10.1007/s10562-008-9694-z10.1007/s10562-008-9694-zSearch in Google Scholar

[48] Park, J. Y., Lee, Y. J., Khanna, P.K., Jun, K.W., Bae, J.W., & Kim, Y. H. (2010). Alumina-supported iron oxide nanoparticles as Fischer-Tropsch catalysts: Effect of particle size of iron oxide. Journal of Molecular Catalysis A: Chemical, 323, 84–90. DOI: 10.1016/j.molcata.2010.03.025. http://dx.doi.org/10.1016/j.molcata.2010.03.02510.1016/j.molcata.2010.03.025Search in Google Scholar

[49] Satokawa, S., Shibata, J., Shimizu, K. I., Satsuma, A., & Hattori, T. (2003). Promotion effect of H2 on the low temperature activity of the selective reduction of NO by light hydrocarbons over Ag/Al2O3. Applied Catalysis B: Environmental, 42, 179–186. DOI: 10.1016/s0926-3373(02)00231-x. http://dx.doi.org/10.1016/S0926-3373(02)00231-X10.1016/S0926-3373(02)00231-XSearch in Google Scholar

[50] Shimoda, N., Faungnawakij, K., Kikuchi, R., Fukunaga, T., & Eguchi, K. (2009). Catalytic performance enhancement by heat treatment of CuFe2O4 spinel and γ-alumina composite catalysts for steam reforming of dimethyl ether. Applied Catalysis A: General, 365, 71–78. DOI: 10.1016/j.apcata.2009.05.049. http://dx.doi.org/10.1016/j.apcata.2009.05.04910.1016/j.apcata.2009.05.049Search in Google Scholar

[51] Sirotin, S. V., Moskovskaya, I. F., & Romanovsky, B. V. (2011). Synthetic strategy for Fe-MCM-41 catalyst: a key factor for homogeneous or heterogeneous phenol oxidation. Catalysis Science & Technology, 1, 971–980. DOI: 10.1039/c1cy00107h. http://dx.doi.org/10.1039/c1cy00107h10.1039/c1cy00107hSearch in Google Scholar

[52] Tham, Y. F., Chen, J. Y., & Dibble, R. W. (2009). Development of a detailed surface mechanism for the selective catalytic reduction of NOx with ethanol on silver alumina catalyst. Proceedings of the Combustion Institute, 32, 2827–2833. DOI: 10.1016/j.proci.2008.06.190. http://dx.doi.org/10.1016/j.proci.2008.06.19010.1016/j.proci.2008.06.190Search in Google Scholar

[53] Wan, H. J., Wu, B. S., Zhang, C. H., Xiang, H. W., Li, Y. W., Xu, B. F., & Yi, F. (2007). Study on Fe-Al2O3 interaction over precipitated iron catalyst for Fischer-Tropsch synthesis. Catalysis Communications, 8, 1538–1545. DOI: 10.1016/j.catcom.2007.01.002. http://dx.doi.org/10.1016/j.catcom.2007.01.00210.1016/j.catcom.2007.01.002Search in Google Scholar

[54] Wan, H. J., Wu, B. S., Xiang, H. W., & Li, Y. W. (2012). Fischer-Tropsch synthesis: Influence of support incorporation manner on metal dispersion, metal-support interaction, and activities of iron catalysts. ACS Catalysis, 2, 1877–1883. DOI: 10.1021/cs200584s. http://dx.doi.org/10.1021/cs200584s10.1021/cs200584sSearch in Google Scholar

[55] Wang, Z., Wan, H. Q., Liu, B., Zhao, X., Li, X. W., Zhu, H. Y., Xu, X., Ji, F. G., Sun, K. Q., Dong, L., & Chen, Y. (2008). In-fluence of magnesia modification on the properties of copper oxide supported on γ-alumina. Journal of Colloid and Interface Science, 320, 520–526. DOI: 10.1016/j.jcis.2008.02.001. http://dx.doi.org/10.1016/j.jcis.2008.02.00110.1016/j.jcis.2008.02.001Search in Google Scholar

[56] Wang, Q. S., Ng, D., & Mannan, M. S. (2009). Study on the reaction mechanism and kinetics of the thermal decomposition of nitroethane. Industrial & Engineering Chemistry Research, 48, 8745–8751. DOI: 10.1021/ie900849n. http://dx.doi.org/10.1021/ie900849n10.1021/ie900849nSearch in Google Scholar

[57] Westermann, A., & Azambre, B. (2011). Performances of novel sulfated ceria-zirconia catalysts for the selective catalytic reduction of NOx by ethanol. Catalysis Today, 176, 441–448. DOI: 10.1016/j.cattod.2010.10.071. http://dx.doi.org/10.1016/j.cattod.2010.10.07110.1016/j.cattod.2010.10.071Search in Google Scholar

[58] Worch, D., Suprun, W., & Gläser, R. (2011). Supported transition metal-oxide catalysts for HC-SCR DeNOx with propene. Catalysis Today, 176, 309–313. DOI: 10.1016/j.cattod.2010.12.008. http://dx.doi.org/10.1016/j.cattod.2010.12.00810.1016/j.cattod.2010.12.008Search in Google Scholar

[59] Wu, Q., He, H., & Yu, Y. B. (2005). In situ DRIFTS study of the selective reduction of NOx with alcohols over Ag/Al2O3 catalyst: Role of surface enolic species. Applied Catalysis B: Environmental, 61, 107–113. DOI: 10.1016/j.apcatb.2005.04.012. http://dx.doi.org/10.1016/j.apcatb.2005.04.01210.1016/j.apcatb.2005.04.012Search in Google Scholar

[60] Wu, Q., Yu, Y. B., & He, H. (2006). Mechanistic study of selective catalytic reduction of NOx with C2H5OH and CH3OCH3 over Ag/Al2O3 by in situ DRIFTS. Chinese Journal of Catalysis, 27, 993–998. DOI: 10.1016/s1872-2067(06)60052-1. http://dx.doi.org/10.1016/S1872-2067(06)60052-110.1016/S1872-2067(06)60052-1Search in Google Scholar

[61] Yu, Y. B., He, H., Feng, Q. C., Gao, H. W., & Yang, X. (2004). Mechanism of the selective catalytic reduction of NOx by C2H5OH over Ag/Al2O3. Applied Catalysis B: Environmental, 49, 159–171. DOI: 10.1016/j.apcatb.2003.12.004. http://dx.doi.org/10.1016/j.apcatb.2003.12.00410.1016/j.apcatb.2003.12.004Search in Google Scholar

[62] Zhang, X. L., He, H., & Ma, Z. C. (2007). Hydrogen promotes the selective catalytic reduction of NOx by ethanol over Ag/Al2O3. Catalysis Communications, 8, 187–192. DOI: 10.1016/j.catcom.2006.06.005. http://dx.doi.org/10.1016/j.catcom.2006.06.00510.1016/j.catcom.2006.06.005Search in Google Scholar

Published Online: 2014-5-23
Published in Print: 2014-9-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Environmental catalysis — Topical issue
  2. Structured catalysts for methanol-to-olefins conversion: a review
  3. Diesel soot combustion catalysts: review of active phases
  4. State of the art in catalytic oxidation of chlorinated volatile organic compounds
  5. Effect of zinc introduction on catalytic performance of ZSM-5 in conversion of methanol to light olefins
  6. Mesoporous phosphated and sulphated silica as solid acid catalysts for glycerol acetylation
  7. Valorisation of bio-oil resulting from fast pyrolysis of wood
  8. Microwave hydrothermal synthesis, characterisation, and catalytic performance of Zn1−x MnxO in cellulose conversion
  9. Montmorillonite intercalated with SiO2, SiO2-Al2O3 or SiO2-TiO2 pillars by surfactant-directed method as catalytic supports for DeNOx process
  10. Fe- and Cu-oxides supported on γ-Al2O3 as catalysts for the selective catalytic reduction of NO with ethanol. Part I: catalyst preparation, characterization, and activity
  11. Characterization of LaRhO3 perovskites for dry (CO2) reforming of methane (DRM)
  12. Visible light photoelectrocatalytic degradation of rhodamine B using a dye-sensitised TiO2 electrode
  13. CdS/TiO2 composite films for methylene blue photodecomposition under visible light irradiation and non-photocorrosion of cadmium sulfide
  14. Photocatalytic air-cleaning using TiO2 nanoparticles in porous silica substrate
  15. Cost-effectiveness analysis to assess commercial TiO2 photocatalysts for acetaldehyde degradation in air
  16. Solid waste decontamination by thermal desorption and catalytic oxidation methods
Downloaded on 3.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0533-3/html?lang=en
Scroll to top button