Startseite Non-enzymatic hydrogen peroxide sensor based on a nanoporous gold electrode modified with platinum nanoparticles
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Non-enzymatic hydrogen peroxide sensor based on a nanoporous gold electrode modified with platinum nanoparticles

  • Guang Yin EMAIL logo , Ling Xing , Xiu-Ju Ma und Jun Wan
Veröffentlicht/Copyright: 20. Dezember 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A novel non-enzymatic electrochemical sensor based on a nanoporous gold electrode modified with platinum nanoparticles was constructed for the determination of hydrogen peroxide (H2O2). Platinum nanoparticles exhibit good electrocatalytic activity towards hydrogen peroxide. The nanoporous gold (NPG) increases the effective surface area and has the capacity to promote electron-transfer reactions. With electrodeposition of Pt nanoparticles (NPs) on the surface of the nanoporous gold, the modified Au electrode afforded a fast, sensitive and selective electrochemical method for the determination of H2O2. The linear range for the detection of H2O2 was from 1.0 × 10−7 M to 2.0 × 10−5 M while the calculated limit of detection was 7.2 × 10−8 M on the basis of the 3σ/slope (σ represents the standard deviation of the blank samples). These findings could lead to the widespread use of electrochemical sensors to detect H2O2.

[1] Albero, B., Sánchez-Brunete, C., & Tadeo, J. L. (2003). Determination of organophosphorus pesticides in fruit juices by matrix solid-phase dispersion and gas chromatography. Journal of Agricultural and Food Chemistry, 51, 6915–6921. DOI: 10.1021/jf030414m. http://dx.doi.org/10.1021/jf030414m10.1021/jf030414mSuche in Google Scholar

[2] Armstrong, F. A., & Wilson, G. S. (2000). Recent developments in faradaic bioelectrochemistry. Electrochimica Acta, 45, 2623–2645. DOI: 10.1016/s0013-4686(00)00342-x. http://dx.doi.org/10.1016/S0013-4686(00)00342-X10.1016/S0013-4686(00)00342-XSuche in Google Scholar

[3] Bönnemann, H., & Richards, R. M. (2001). Nanoscopic metal particles — synthetic methods and potential applications. European Journal of Inorganic Chemistry, 10, 2455–2480. DOI: 10.1002/1099-0682(200109)2001:10〈2455::aid-ejic2455〉3.0.co;2-z. http://dx.doi.org/10.1002/1099-0682(200109)2001:10<2455::AID-EJIC2455>3.0.CO;2-Z10.1002/1099-0682(200109)2001:10<2455::AID-EJIC2455>3.0.CO;2-ZSuche in Google Scholar

[4] Chen, S. H., Yuan, R., Chai, Y. Q., Yin, B., Li, W. J., & Min, L. G. (2009). Amperometric hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase on core-shell organosilica@chitosan nanospheres and multiwall carbon nanotubes composite. Electrochimica Acta, 54, 3039–3046. DOI: 10.1016/j.electacta.2008.12.009. http://dx.doi.org/10.1016/j.electacta.2008.12.00910.1016/j.electacta.2008.12.009Suche in Google Scholar

[5] Clark, L. C. (1970). U.S. Patent No. 3539455. Washington, DC. USA: U.S. Patent and Trademark Office. Suche in Google Scholar

[6] Gao, Z. Y., Liu, J. L., Chang, J. L., Wu, D. P., He, J. J., Wang, K., Xu, F., & Jiang, K. (2012). Mesocrystalline Cu2O hollow nanocubes: synthesis and application in non-enzymatic amperometric detection of hydrogen peroxide and glucose. CrystEngComm, 14, 6639–6646. DOI: 10.1039/c2ce25498k. http://dx.doi.org/10.1039/c2ce25498k10.1039/c2ce25498kSuche in Google Scholar

[7] Heath, J. R. (1998). Covalency in semiconductor quantum dots. Chemical Society Reviews, 27, 65–71. DOI: 10.1039/a8270 65z. http://dx.doi.org/10.1039/a827065zSuche in Google Scholar

[8] Jia, J. B., Wang, B. Q., Wu, A. G., Cheng, G. J., Li, Z., & Dong, S. J. (2002). A method to construct a thirdgeneration horseradish peroxidase biosensor: Self-assembling gold nanoparticles to three-dimensional sol-gel network. Analytical Chemistry, 74, 2217–2223. DOI: 10.1021/ac011116w. http://dx.doi.org/10.1021/ac011116w10.1021/ac011116wSuche in Google Scholar

[9] Kafi, A. K. M., Wu, G. S., & Chen, A. C. (2008). A novel hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto Au-modified titanium dioxide nanotube arrays. Biosensors and Bioelectronics, 24, 566–571. DOI: 10.1016/j.bios.2008.06.004. http://dx.doi.org/10.1016/j.bios.2008.06.00410.1016/j.bios.2008.06.004Suche in Google Scholar

[10] Lases, E. C., Duurkens, V. A. M., Gerritsen, W. B. M., & Haas, F. J. L. M. (2000). Oxidative stress after lung resection therapy — A pilot study. Chest, 117, 999–1003. DOI: 10.1378/chest.117.4.999. http://dx.doi.org/10.1378/chest.117.4.99910.1378/chest.117.4.999Suche in Google Scholar

[11] Lewis, L. N. (1993). Chemical catalysis by colloids and clusters. Chemical Reviews, 93, 2693–2730. DOI: 10.1021/cr00024a006. http://dx.doi.org/10.1021/cr00024a00610.1021/cr00024a006Suche in Google Scholar

[12] Li, Z. Z., Cui, X. L., Zheng, J. S., Wang, Q. F., & Lin, Y. H. (2007). Effects of microstructure of carbon nanofibers for amperometric detection of hydrogen peroxide. Analytica Chimica Acta, 597, 238–244. DOI: 10.1016/j.aca.2007.06.046. http://dx.doi.org/10.1016/j.aca.2007.06.04610.1016/j.aca.2007.06.046Suche in Google Scholar

[13] Lin, J. H., Zhang, L. J., & Zhang, S. S. (2007). Amperometric biosensor based on coentrapment of enzyme and mediator by gold nanoparticles on indium-tin oxide electrode. Analytical Biochemistry, 370, 180–185. DOI: 10.1016/j.ab.2007.06.021. http://dx.doi.org/10.1016/j.ab.2007.06.02110.1016/j.ab.2007.06.021Suche in Google Scholar

[14] Link, S., & El-Sayed, M. A. (2003). Optical properties and ultrafast dynamics of metallic nanocrystals. Annual Review of Physical Chemistry, 54, 331–366. DOI: 10.1146/annurev. physchem.54.011002.103759. http://dx.doi.org/10.1146/annurev.physchem.54.011002.10375910.1146/annurev.physchem.54.011002.103759Suche in Google Scholar

[15] Liu, G. D., & Lin, Y. H. (2005). Electrochemical sensor for organophosphate pesticides and nerve agents using zirconia nanoparticles as selective sorbents. Analytical Chemistry, 77, 5894–5901. DOI: 10.1021/ac050791t. http://dx.doi.org/10.1021/ac050791t10.1021/ac050791tSuche in Google Scholar

[16] Lu, F. S., Gu, L. R., Meziani, M. J., Wang, X., Luo, P. G., Veca, L. M., Cao, L., & Sun, Y. P. (2009). Advances in bioapplications of carbon nanotubes. Advanced Materials, 21, 139–152. DOI: 10.1002/adma.200801491. http://dx.doi.org/10.1002/adma.20080149110.1002/adma.200801491Suche in Google Scholar

[17] Ma, L. P., Yuan, R., Chai, Y. Q., & Chen, S. H. (2009). Amperometric hydrogen peroxide biosensor based on the immobilization of HRP on DNA-silver nanohybrids and PDDAprotected gold nanoparticles. Journal of Molecular Catalysis B: Enzymatic, 56, 215–220. DOI: 10.1016/j.molcatb.2008.05.007. http://dx.doi.org/10.1016/j.molcatb.2008.05.00710.1016/j.molcatb.2008.05.007Suche in Google Scholar

[18] Mala Ekanayake, E. M. I., Preethichandra, D. M. G., & Kaneto, K. (2008). Bi-functional amperometric biosensor for low concentration hydrogen peroxide measurements using polypyrrole immobilizing matrix. Sensors and Actuators B: Chemical, 132, 166–171. DOI: 10.1016/j.snb.2008.01.042. http://dx.doi.org/10.1016/j.snb.2008.01.04210.1016/j.snb.2008.01.042Suche in Google Scholar

[19] Niwa, O., Horiuchi, T., Kurita, R., & Torimitsu, K. (1998). On-line electrochemical sensor for selective continuous measurement of acetylcholine in cultured brain tissue. Analytical Chemistry, 70, 1126–1132. DOI: 10.1021/ac970257o. http://dx.doi.org/10.1021/ac970257o10.1021/ac970257oSuche in Google Scholar

[20] Roucoux, A., Schulz, J., & Patin, H. (2002). Reduced transition metal colloids: A novel family of reusable catalysts? Chemical Reviews, 102, 3757–3778. DOI: 10.1021/cr010350j. http://dx.doi.org/10.1021/cr010350j10.1021/cr010350jSuche in Google Scholar

[21] Roy, S., & Gao, Z. Q. (2009). Nanostructure-based electrical biosensors. Nano Today, 4, 318–334. DOI: 10.1016/j.nantod.2009.06.003. http://dx.doi.org/10.1016/j.nantod.2009.06.00310.1016/j.nantod.2009.06.003Suche in Google Scholar

[22] Ruiz, B. L., Dempsey, E., Hua, C., Smyth, M. R., & Wang, J. (1993). Development of amperometric sensors for choline, acetylcholine and arsenocholine. Analytica Chimica Acta, 273, 425–430. DOI: 10.1016/0003-2670(93)80186-o. http://dx.doi.org/10.1016/0003-2670(93)80186-O10.1016/0003-2670(93)80186-OSuche in Google Scholar

[23] Thenmozhi, K., & Narayanan, S. S. (2007). Amperometric hydrogen peroxide sensor based on a sol-gel-derived ceramic carbon composite electrode with toluidine blue covalently immobilized using 3-aminopropyltrimethoxysilane. Analytical and Bioanalytical Chemistry, 387, 1075–1082. DOI: 10.1007/s00216-006-0992-2. http://dx.doi.org/10.1007/s00216-006-0992-210.1007/s00216-006-0992-2Suche in Google Scholar PubMed

[24] Thomé-Duret, V., Reach, G., Gangnerau, M. N., Lemonnier, F., Klein, J. C., Zhang, Y. N., Hu, Y. B., & Wilson, G. S. (1996). Use of a subcutaneous glucose sensor to detect decreases in glucose concentration prior to observation in blood. Analytical Chemistry, 68, 3822–3826. DOI: 10.1021/ac960069i. http://dx.doi.org/10.1021/ac960069i10.1021/ac960069iSuche in Google Scholar PubMed

[25] Vianello, F., Zennaro, L., & Rigo, A. (2007). A coulometric biosensor to determine hydrogen peroxide using a monomolecular layer of horseradish peroxidase immobilized on a glass surface. Biosensors and Bioelectronics, 22, 2694–2699. DOI: 10.1016/j.bios.2006.11.007. http://dx.doi.org/10.1016/j.bios.2006.11.00710.1016/j.bios.2006.11.007Suche in Google Scholar PubMed

[26] Wang, H. S., Pan, Q. X., & Wang, G. X. (2005). A biosensor based on immobilization of horseradish peroxidase in chitosan matrix cross-linked with glyoxal for amperometric determination of hydrogen peroxide. Sensors, 5, 266–276. DOI: 10.3390/s5040266. http://dx.doi.org/10.3390/s504026610.3390/s5040266Suche in Google Scholar

[27] Xu, B., Ye, M. L., Yu, Y. X., & Zhang, W. D. (2010). A highly sensitive hydrogen peroxide amperometric sensor based on MnO2-modified vertically aligned multiwalled carbon nanotubes. Analytica Chimica Acta, 674, 20–26. DOI: 10.1016/j.aca.2010.06.004. http://dx.doi.org/10.1016/j.aca.2010.06.00410.1016/j.aca.2010.06.004Suche in Google Scholar PubMed

[28] Xu, F. G., Sun, Y. J., Zhang, Y., Shi, Y., Wen, Z. W., & Li, Z. H. (2011). Graphene-Pt nanocomposite for nonenzymatic detection of hydrogen peroxide with enhanced sensitivity. Electrochemistry Communications, 13, 1131–1134. DOI: 10.1016/j.elecom.2011.07.017. http://dx.doi.org/10.1016/j.elecom.2011.07.01710.1016/j.elecom.2011.07.017Suche in Google Scholar

[29] Yang, L., Janle, E., Huang, T. H., Gitzen, J., Kissinger, P. T., Vreeke, M., & Heller, A. (1995). Applications of “wired” peroxidase electrodes for peroxidase determination in liquid chromatography coupled to oxidase immobilized enzyme reactors. Analytical Chemistry, 67, 1326–1331 DOI: 10.1021/ac00104a005. http://dx.doi.org/10.1021/ac00104a00510.1021/ac00104a005Suche in Google Scholar

[30] Yang, M. H., Yang, Y., Yang, H. F., Shen, G. L., & Yu, R. Q. (2006). Layer-by-layer self assembled multilayer films of carbon nanotubes and platinum nanoparticles with polyelectrolyte for the fabrication of biosensors. Biomaterials, 27, 246–255. DOI: 10.1016/j.biomaterials.2005.05.077. http://dx.doi.org/10.1016/j.biomaterials.2005.05.07710.1016/j.biomaterials.2005.05.077Suche in Google Scholar PubMed

[31] Yorek, M. A. (2003). The role of oxidative stress in diabetic vascular and neural disease. Free Radical Research, 37, 471–480. DOI: 10.1080/1071576031000083161. http://dx.doi.org/10.1080/107157603100008316110.1080/1071576031000083161Suche in Google Scholar PubMed

[32] You, T. N., Niwa, O., Tomita, M., & Hirono, S. (2003). Characterization of platinum nanoparticle-embedded carbon film electrode and its detection of hydrogen peroxide. Analytical Chemistry, 75, 2080–2085. DOI: 10.1021/ac026337w. http://dx.doi.org/10.1021/ac026337w10.1021/ac026337wSuche in Google Scholar PubMed

[33] Zhang, H. L., Lai, G. S., Han, D. Y., & Yu, A. M. (2008a). An amperometric hydrogen peroxide biosensor based on immobilization of horseradish peroxidase on an electrode modified with magnetic dextran microspheres. Analytical and Bioanalytical Chemistry, 390, 971–977. DOI: 10.1007/s00216-007-1748-3. http://dx.doi.org/10.1007/s00216-007-1748-310.1007/s00216-007-1748-3Suche in Google Scholar PubMed

[34] Zhang, T. T., Yuan, R., Chai, Y. Q., Li, W. J., & Ling, S. J. (2008b). A novel nonenzymatic hydrogen peroxide sensor based on a polypyrrole nanowire-copper nanocomposite modified gold electrode. Sensors, 8, 5141–5152. DOI: 10.3390/s8085141. http://dx.doi.org/10.3390/s808514110.3390/s8085141Suche in Google Scholar PubMed PubMed Central

[35] Zhou, G. Z., & Ju, H. X. (2004). Electrogenerated chemiluminescence from a CdSe nanocrystal film and its sensing application in aqueous solution. Analytical Chemistry, 76, 6871–6876. DOI: 10.1021/ac049012j. http://dx.doi.org/10.1021/ac049012j10.1021/ac049012jSuche in Google Scholar PubMed

[36] Zhou, K. F., Zhu, Y. H., Yang, X. L., Luo, J., Li, C. Z., & Luan, S. R. (2010). A novel hydrogen peroxide biosensor based on Au-graphene-HRP-chitosan biocomposites. Electrochimica Acta, 55, 3055–3060. DOI: 10.1016/j.electacta.2010.01.035. http://dx.doi.org/10.1016/j.electacta.2010.01.03510.1016/j.electacta.2010.01.035Suche in Google Scholar

Published Online: 2013-12-20
Published in Print: 2014-4-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Determination of mercury species using thermal desorption analysis in AAS
  2. Non-enzymatic hydrogen peroxide sensor based on a nanoporous gold electrode modified with platinum nanoparticles
  3. Production and application of amylases of Rhizopus oryzae and Rhizopus microsporus var. oligosporus from industrial waste in acquisition of glucose
  4. Effect of salicin on induction and carbon catabolite repression of endoxylanase synthesis in Penicillium janthinellum MTCC 10889
  5. Recovery of acetaminophen from aqueous solutions using a supported liquid membrane based on a quaternary ammonium salt as ionophore
  6. Enantioseparation of mandelic acid enantiomers in ionic liquid aqueous two-phase extraction systems
  7. Fatty acid methyl ester production from acid oil using silica sulfuric acid: Process optimization and reaction kinetics
  8. Mineral constituents of edible parasol mushroom Macrolepiota procera (Scop. ex Fr.) Sing and soils beneath its fruiting bodies collected from a rural forest area
  9. Evaluation of antioxidants in Dong quai (Angelica sinensis) and its dietary supplements
  10. Electrochemical storage properties of polyaniline-, poly(N-methylaniline)-, and poly(N-ethylaniline)-coated pencil graphite electrodes
  11. Controllable one-step synthesis of ZnO nanostructures using molybdophosphoric acid
  12. I2-mediated α-selective Ferrier glycosylation approach to synthesis of O-glycosyl amino acids
  13. Synthesis of 1,1-diacetates catalysed by silica-supported boron sulfonic acid under solvent-free conditions and ambient temperature
  14. Development of oxopyrrolidine-based anti-cancer compounds: DNA binding, in silico, cell line studies, drug-likeness and mechanism at supra-molecular level
  15. Clay and charcoal composites: characterisation and application of factorial design analysis for dye adsorption
  16. Role of thermoxidation and depolymerisation in the ageing of systems paper/gum arabic/historical ink
  17. Natural organic acids promoted Beckmann rearrangement: Green and expeditious synthesis of amides under solvent-free conditions
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0473-y/html?lang=de
Button zum nach oben scrollen