Startseite Evaluation of antioxidants in Dong quai (Angelica sinensis) and its dietary supplements
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Evaluation of antioxidants in Dong quai (Angelica sinensis) and its dietary supplements

  • Anna Filipiak-Szok EMAIL logo , Marzanna Kurzawa und Edward Szłyk
Veröffentlicht/Copyright: 20. Dezember 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The antioxidant activity (AA), total phenolic content (TPC) and total flavonoids content (TFC) in Dong quai (DQ, Angelica sinensis) raw materials and dietary supplements (DS) containing this plant were determined using the CUPRAC, FRAP and fluorescence methods. The antioxidant activity for DQ aqueous extracts revealed by CUPRAC was (1330.45 ± 1.30) μmol Trolox equivalent (TE) per 100 g of dry mass (DM), whereas the antioxidant activity as determined by FRAP was (1813.9 ± 2.0) μmol of TE per 100 g of DM. Lower values were noted for the fluorescence method than for CUPRAC and FRAP (ranging from (35.96 ± 0.3) to (304.6 ± 1.4) μmol of TE per 100 g of DM). The highest TPC values were determined for an aqueous extract of DQ ((3330.3 ± 2.3) μmol of TE per 100 g of DM), while TFC for ethanolic extracts of DQ was ((146.50 ± 0.5) mg of quercetin equivalent (QE) per 100 g of DM). Cinnamic acid, isomers of benzoic acid and derivatives of quercetin were analysed by HPLC-PDA. The ferulic acid concentration in an ethanolic extract of DQ was (21.83 ± 0.07) mg per 100 g of DM. Of the flavonols detected, rutin exhibited the highest concentration in ethanolic extract of DQ ((3.32 ± 0.13) mg of QE per 100 g of DM). Other phytochemicals (alkaloids, saponins, flavonoids, anthraquinones, tannins, steroids, etc.) were identified by phytoscreening colour reaction. The results were analysed by principal component analysis (PCA), cluster analysis and one-way ANOVA tests.

[1] Apak, R., Güçlü, K., Özyürek, M., & Çelik, S. E. (2008). Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchimica Acta, 160, 413–419. DOI: 10.1007/s00604-007-0777-0. http://dx.doi.org/10.1007/s00604-007-0777-010.1007/s00604-007-0777-0Suche in Google Scholar

[2] Circosta, C., De Pasquale, R., Palumbo, D. R., Samperi, S., & Occhiuto, F. (2006). Estrogenic activity of standardized extract of Angelica sinensis. Phytotherapy Research, 20, 665–669. DOI: 10.1002/ptr.1928. http://dx.doi.org/10.1002/ptr.192810.1002/ptr.1928Suche in Google Scholar

[3] Cisowski, W. (1995). Analiza fitochemiczna. Gdańsk, Poland: Akademia Medyczna w Gdańsku. (in Polish) Suche in Google Scholar

[4] Clifford, M. N. (2004). Diet-derived phenols in plasma and tissues and their implications for health. Planta Medica, 70, 1103–1114. DOI: 10.1055/s-2004-835835. http://dx.doi.org/10.1055/s-2004-83583510.1055/s-2004-835835Suche in Google Scholar

[5] Cook, N. C., & Samman, S. (1996). Flavonoids — chemistry, metabolism, cardioprotective effects and dietary sources. The Journal of Nutritional Biochemistry, 7, 66–76. DOI: 10.1016/s0955-2863(95)00168-9. http://dx.doi.org/10.1016/0955-2863(95)00168-910.1016/S0955-2863(95)00168-9Suche in Google Scholar

[6] Filipiak-Szok, A., Kurzawa, M., & Szłyk, E. (2012a). Determination of antioxidant capacity and content of phenols, phenolic acids and flavonols contents in Indian and European gooseberry. Chemical Papers, 66, 259–268. DOI: 10.2478/s11696-012-0151-5. http://dx.doi.org/10.2478/s11696-012-0151-510.2478/s11696-012-0151-5Suche in Google Scholar

[7] Filipiak-Szok, A., Piasta, A., Kurzawa, M., & Szłyk, E. (2012b). Determination of flavonols and phenolic acids in Puearia lobata (Kudzu) root by HPLC-PDA method. Current Issues in Pharmacy and Medical Sciences, 25, 278–281. http://dx.doi.org/10.12923/j.2084-980X/25.3/a.1310.12923/j.2084-980X/25.3/a.13Suche in Google Scholar

[8] Ho, C. C., Kumaran, A., & Hwang, L. S. (2009). Bio-assay guided isolation and identification of anti-Alzheimer active compounds from the root of Angelica sinensis. Food Chemistry, 114, 246–252. DOI: 10.1016/j.foodchem.2008.09.046. http://dx.doi.org/10.1016/j.foodchem.2008.09.04610.1016/j.foodchem.2008.09.046Suche in Google Scholar

[9] Huang, L. F., Li, B. Y., Liang, Y. Z., Guo, F. Q., & Wang, Y. L. (2004). Application of combined approach to analyze the constituents of essential oil from Dong quai. Analytical and Bioanalytical Chemistry, 378, 510–517. DOI: 10.1007/s00216- 003-2309-z. http://dx.doi.org/10.1007/s00216-003-2309-z10.1007/s00216-003-2309-zSuche in Google Scholar PubMed

[10] Huang, S. H., Chen, C. C., Lin, C. M., & Chiang, B. H. (2008). Antioxidant and flavor properties of Angelica sinensis extracts as affected by processing. Journal of Food Composition and Analysis, 21, 402–409. DOI: 10.1016/j.jfca.2008.02.005. http://dx.doi.org/10.1016/j.jfca.2008.02.00510.1016/j.jfca.2008.02.005Suche in Google Scholar

[11] Lafay, S., & Gil-Izquierdo, A. (2008). Bioavailability of phenolic acids. Phytochemistry Reviews, 7, 301–311. DOI: 10.1007/s11101-007-9077-x. http://dx.doi.org/10.1007/s11101-007-9077-x10.1007/s11101-007-9077-xSuche in Google Scholar

[12] Lao, S. C., Li, S. P., Kan, K. K. W., Li, P., Wan, J. B., Wang, Y. T., Dong, T. X., & Tsim, K. W. K. (2004). Identification and quantification of 13 components in Angelica sinensis (Danggui) by gas chromatography-mass spectrometry coupled with pressurized liquid extraction. Analytica Chimica Acta, 526, 131–137. DOI: 10.1016/j.aca.2004.09.050. http://dx.doi.org/10.1016/j.aca.2004.09.05010.1016/j.aca.2004.09.050Suche in Google Scholar

[13] Li, P., Li, S. P., Lao, S. C., Fu, C. M., Kan, K. K. W., & Wang, Y. T. (2006). Optimization of pressurized liquid extraction for Z-ligustilide, Z-butylidenephthalide and ferulic acid in Angelica sinensis. Journal of Pharmaceutical and Biomedical Analysis, 40, 1073–1079. DOI: 10.1016/j.jpba.2005.08.035. http://dx.doi.org/10.1016/j.jpba.2005.08.03510.1016/j.jpba.2005.08.035Suche in Google Scholar PubMed

[14] Lu, G. H., Chan, K., Leung, K., Chan, C. L., Zhao, Z. Z., & Jiang, Z. H. (2005). Assay of free ferulic acid and total ferulic acid for quality assessment of Angelica sinensis. Journal of Chromatography A, 1068, 209–219. DOI: 10.1016/j.chroma.2005.01.082. http://dx.doi.org/10.1016/j.chroma.2005.01.08210.1016/j.chroma.2005.01.082Suche in Google Scholar PubMed

[15] Mei, Q. B., Tao, J. Y., & Cui, B. (1991). Advances in the pharmacological studies of radix Angelica sinensis (Oliv) Diels (Chinese Danggui). Chinese Medical Journal, 104, 776–781. Suche in Google Scholar

[16] Novas, M. J., Jimenez, A. M., & Asuero, A. G. (2004). Determination of antioxidant activity of Canary seed infusions by chemiluminescence. Journal of Analytical Chemistry, 59, 75–77. DOI: 1061-9348/04/5901-0075. http://dx.doi.org/10.1023/B:JANC.0000011672.20745.5410.1023/B:JANC.0000011672.20745.54Suche in Google Scholar

[17] Pharmacopoeia Commission (1988). Pharmacopoeia of the People’s Republic of China 2000 (English edition, pp. 106–107). Guangzhou, China: Guandong Science and Technology Press. Suche in Google Scholar

[18] Pharmacopoeia Commission (2000). Pharmacopoeia of the People’s Republic of China 2000 (English edition, pp. 158). Beijing, China: Chemical Industry Press. Suche in Google Scholar

[19] Pogačnik, L., & Ulrih, N. P. (2012) Application of optimized chemiluminescence assay for determination of the antioxidant capacity of herbal extracts. Luminescence, 27, 505–510. DOI: 10.1002/bio.1384. http://dx.doi.org/10.1002/bio.138410.1002/bio.1384Suche in Google Scholar PubMed

[20] Polskie Towarzystwo Farmaceutyczne (2002). Farmakopea Polska. (4th ed.) Warsawa, Poland: Polskie Towarzystwo Farmaceutyczne. (in Polish) Suche in Google Scholar

[21] Ross, I. A. (2001). Angelica sinensis. In Medicinal plants of the world (pp. 67–79). Totowa, NJ, USA: Humana Press. DOI: 10.1007/978-1-59259-237-1 5. http://dx.doi.org/10.1007/978-1-59259-237-1_510.1007/978-1-59259-237-1Suche in Google Scholar

[22] Senthamarai, R., Ismail, A. M., Kiurbha, T. S. V., & Balasubramanian, P. (2012). Pharmacognostical and phytochemical studies on leaves of Stephania japonica Linn. Journal of Chemical and Pharmaceutical Research, 4, 1457–1464. Suche in Google Scholar

[23] Shou, C., Li, J., & Liu, Z. (2011). Complementary and alternative medicine in the treatment of menopausal symptoms. Chinese Journal of Integrative Medicine, 17, 883–888. DOI: 10.1007/s11655-011-0932-7. http://dx.doi.org/10.1007/s11655-011-0932-710.1007/s11655-011-0932-7Suche in Google Scholar PubMed

[24] Song, G. X., Deng, C. H., Wu, D., & Hu, Y. M. (2004). Headspace solid-phase microextraction-gas chromatographic- mass spectrometric analysis of the essential oils of two traditional chinese medicines, Angelica pubescens and Angelica sinensis. Chromatographia, 59, 343–349. DOI: 10.1365/s10337-003-0175-7. Suche in Google Scholar

[25] Sun, Y. L., Tang, J., Gu, X. H., & Li, D. Z. (2005), Water-soluble polysaccharides from Angelica sinensis (Oliv.) Diels: Preparation, characterization and bioactivity. International Journal of Biological Macromolecules, 36, 283–289. DOI: 10.1016/j.ijbiomac.2005.07.005. http://dx.doi.org/10.1016/j.ijbiomac.2005.07.00510.1016/j.ijbiomac.2005.07.005Suche in Google Scholar PubMed

[26] Szajdek, A., & Borowska, E. J. (2008). Bioactive compounds and health-promoting properties of berry fruits: a review. Plant Foods for Human Nutrition, 63, 147–156. DOI: 10.1007/s11130-008-0097-5. http://dx.doi.org/10.1007/s11130-008-0097-510.1007/s11130-008-0097-5Suche in Google Scholar PubMed

[27] Upton, R. (2003). American herbal pharmacopoeia and therapeutic compendium: Dang Gui root — Angelica sinensis (Oliv.) Diels. Scotts Valley, CA, USA: American Herbal Pharmacopoeia. Suche in Google Scholar

[28] Wang, S., Maa, H. Q., Sunc, Y. J., Qiao, C. D., Shao, S. J., & Jiang, S. X. (2007). Fingerprint quality control of Angelica sinensis (Oliv.) Diels by high-performance liquid chromatography coupled with discriminant analysis. Talanta, 72, 434–436. DOI: 10.1016/j.talanta.2006.11.006. http://dx.doi.org/10.1016/j.talanta.2006.11.00610.1016/j.talanta.2006.11.006Suche in Google Scholar PubMed

[29] Weng, C. J., & Yen, G. C. (2012). Chemopreventive effects of dietary phytochemicals against cancer invasion and metastasis: Phenolic acids, monophenol, polyphenol, and their derivatives. Cancer Treatment Reviews, 38, 76–87. DOI: 10.1016/j.ctrv.2011.03.001. http://dx.doi.org/10.1016/j.ctrv.2011.03.00110.1016/j.ctrv.2011.03.001Suche in Google Scholar PubMed

[30] Wojcikowski, K., Wohlmuth, H., Johnson, D. W., Rolfe, M., & Gobe, G. (2009). An in vitro investigation of herbs traditionally used for kidney and urinary system disorders: Potential therapeutic and toxic effects. Nephrology, 14, 70–79. DOI: 10.1111/j.1440-1797.2008.01017.x. http://dx.doi.org/10.1111/j.1440-1797.2008.01017.x10.1111/j.1440-1797.2008.01017.xSuche in Google Scholar PubMed

[31] Zhao, K. J., Dong, T. T. X., Tu, P. F., Song, Z. H., Lo, C. K., & Tsim, K. W. K. (2003). Molecular genetic and chemical assessment of radix Angelica (Danggui) in China. Journal of Agricultural and Food Chemistry, 51, 2576–2583. DOI: 10.1021/jf026178h. http://dx.doi.org/10.1021/jf026178h10.1021/jf026178hSuche in Google Scholar PubMed

Published Online: 2013-12-20
Published in Print: 2014-4-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Determination of mercury species using thermal desorption analysis in AAS
  2. Non-enzymatic hydrogen peroxide sensor based on a nanoporous gold electrode modified with platinum nanoparticles
  3. Production and application of amylases of Rhizopus oryzae and Rhizopus microsporus var. oligosporus from industrial waste in acquisition of glucose
  4. Effect of salicin on induction and carbon catabolite repression of endoxylanase synthesis in Penicillium janthinellum MTCC 10889
  5. Recovery of acetaminophen from aqueous solutions using a supported liquid membrane based on a quaternary ammonium salt as ionophore
  6. Enantioseparation of mandelic acid enantiomers in ionic liquid aqueous two-phase extraction systems
  7. Fatty acid methyl ester production from acid oil using silica sulfuric acid: Process optimization and reaction kinetics
  8. Mineral constituents of edible parasol mushroom Macrolepiota procera (Scop. ex Fr.) Sing and soils beneath its fruiting bodies collected from a rural forest area
  9. Evaluation of antioxidants in Dong quai (Angelica sinensis) and its dietary supplements
  10. Electrochemical storage properties of polyaniline-, poly(N-methylaniline)-, and poly(N-ethylaniline)-coated pencil graphite electrodes
  11. Controllable one-step synthesis of ZnO nanostructures using molybdophosphoric acid
  12. I2-mediated α-selective Ferrier glycosylation approach to synthesis of O-glycosyl amino acids
  13. Synthesis of 1,1-diacetates catalysed by silica-supported boron sulfonic acid under solvent-free conditions and ambient temperature
  14. Development of oxopyrrolidine-based anti-cancer compounds: DNA binding, in silico, cell line studies, drug-likeness and mechanism at supra-molecular level
  15. Clay and charcoal composites: characterisation and application of factorial design analysis for dye adsorption
  16. Role of thermoxidation and depolymerisation in the ageing of systems paper/gum arabic/historical ink
  17. Natural organic acids promoted Beckmann rearrangement: Green and expeditious synthesis of amides under solvent-free conditions
Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0485-7/html
Button zum nach oben scrollen