Abstract
1,1-Diacetates derivatives were prepared using the direct condensation of aldehydes with acetic anhydride in the presence of silica-supported boron sulfonic acid (SiO2/B(SO4H)3) as a tri-functional inorganic Brønsted acid catalyst under solvent-free conditions at ambient temperature. The salient features of this methodology are: (i) cheaper process ready availability of the catalyst; (ii) versatility; (iii) high regio-selectivity of the procedure and recyclable property of the catalyst.
[1] Aggen, D. H., Arnold, J. N., Hayes, P. D., Smoter, N. J., & Mohan, R. S. (2004). Bismuth compounds in organic synthesis. Bismuth nitrate catalyzed chemoselective synthesis of acylals from aromatic aldehydes. Tetrahedron, 60, 3675–3679. DOI: 10.1016/j.tet.2004.02.046. 10.1016/j.tet.2004.02.046Search in Google Scholar
[2] Deka, N., Kalita, D. J., Borah, R., & Sarma, J. C. (1997). Iodine as acetylation catalyst in the preparation of 1,1-diacetates from aldehydes. Journal of Organic Chemistry, 62, 1563–1564. DOI: 10.1021/jo961741e. http://dx.doi.org/10.1021/jo961741e10.1021/jo961741eSearch in Google Scholar
[3] Firouzabadi, H., Iranpoor, N., & Amani, K. (2002). Heteropoly acids as heterogeneous catalysts for thioacetalization and transthioacetalization reactions. Organic Synthesis, 2002, 59–62. DOI: 10.1055/s-2002-19300. http://dx.doi.org/10.1055/s-2002-1930010.1055/s-2002-19300Search in Google Scholar
[4] Frick, J. G., Jr., & Harper, R. J., Jr. (1984). Acetals as crosslinking reagents for cotton. Journal Applied Polymer Science, 29, 1433–1447. DOI: 10.1002/app.1984.070290436. http://dx.doi.org/10.1002/app.1984.07029043610.1002/app.1984.070290436Search in Google Scholar
[5] Ghorbani-Vaghei, R., & Malaekehpoor, S. M. (2010). Onepot facile synthesis of acridine derivatives under solvent-free condition. Journal of the Iranian Chemical Society, 7, 957–964. DOI: 10.1007/bf03246091. http://dx.doi.org/10.1007/BF0324609110.1007/BF03246091Search in Google Scholar
[6] Ghosh, R., Maiti, S., Chakraborty, A., & Halder, R. J. (2004). Indium triflate: a reusable catalyst for expeditious chemoselective conversion of aldehydes to acylals. Journal of Molecular Catalysis A: Chemical, 215, 49–53. DOI: 10.1016/j.molcata.2004.01.018. http://dx.doi.org/10.1016/j.molcata.2004.01.01810.1016/j.molcata.2004.01.018Search in Google Scholar
[7] Hajipour, A. R., Zarei, A., & Ruoho, A. E. (2007). P2O5/Al2O3 as an efficient heterogeneous catalyst for chemoselective synthesis of 1,1-diacetates under solvent-free conditions. Tetrahedron Letters, 48, 2881–2884. DOI: 10.1016/j.tetlet.2007.02.090. http://dx.doi.org/10.1016/j.tetlet.2007.02.09010.1016/j.tetlet.2007.02.090Search in Google Scholar
[8] Hajipour, A. R., Khazdooz, L., & Ruoho, A. E. (2008). Brönsted acidic ionic liquid as an efficient catalyst for chemoselective synthesis of 1,1-diacetates under solvent-free conditions. Catalysis Communications, 9, 89–96. DOI: 10.1016/j.catcom.2007.05.003. http://dx.doi.org/10.1016/j.catcom.2007.05.00310.1016/j.catcom.2007.05.003Search in Google Scholar
[9] Hosseini-Sarvari, M. (2011). Synthesis of quinolines using nanoflake ZnO as a new catalyst under solvent-free conditions. Journal of the Iranian Chemical Society, 8, S119–S128. http://dx.doi.org/10.1007/BF0325428810.1007/BF03254288Search in Google Scholar
[10] Jin, T. S., Sun, G., Li, Y.W., & Li, T. S. (2002). An efficient and convenient procedure for the preparation of 1,1-diacetates from aldehydes catalyzed by H2NSO3H. Green Chemistry, 4, 255–256. DOI: 10.1039/b200219a. http://dx.doi.org/10.1039/b200219a10.1039/b200219aSearch in Google Scholar
[11] Kalbasi, R. J., Massah, A. J., & Shafiei, A. R. (2011). Synthesis and characterization of BEA-SO3H as an efficient and chemoselective acid catalyst. Journal of Molecular Catalysis A: Chemical, 335, 51–59. DOI: 10.1016/j.molcata.2010.11.013. http://dx.doi.org/10.1016/j.molcata.2010.11.01310.1016/j.molcata.2010.11.013Search in Google Scholar
[12] Kannasani, R. K., Satyanarayana-Peruri, V. V., & Battula, S. R. (2012). NaHSO4-SiO2 as an efficient and chemoselective catalyst, for the synthesis of acylal from aldehydes under, solvent-free conditions. Chemistry Central Journal, 6, 136. DOI: 10.1186/1752-153x-6-136. http://dx.doi.org/10.1186/1752-153X-6-13610.1186/1752-153X-6-136Search in Google Scholar PubMed PubMed Central
[13] Khan, A. T., Choudhury, L. H., & Ghosh, S. (2005). Acetonyltriphenylphosphonium bromide (ATPB): A versatile reagent for the acylation of alcohols, phenols, thiols and amines and for 1,1-diacylation of aldehydes under solvent-free conditions. European Journal of Organic Chemistry, 13, 2782–2787. DOI: 10.1002/ejoc.200500066. http://dx.doi.org/10.1002/ejoc.20050006610.1002/ejoc.200500066Search in Google Scholar
[14] Kiasat, A. R., & Fallah-Mehrjardi, M. (2008). B(HSO4)3: a novel and efficient solid acid catalyst for the regioselective conversion of epoxides to thiocyanohydrins under solventfree conditions. Journal of The Brazilian Chemical Society, 19, 1595–1599. DOI: 10.1590/s0103-50532008000800020. http://dx.doi.org/10.1590/S0103-5053200800080002010.1590/S0103-50532008000800020Search in Google Scholar
[15] Kochhar, K. S., Bal, B. S., Deshpande, R. P., Rajadhyaksha, S. N., & Pinnick, H. W. (1983). Protecting groups in organic synthesis. Part 8. Conversion of aldehydes into geminal diacetates. Journal of Organic Chemistry, 48, 1765–1767. DOI: 10.1021/jo00158a036. http://dx.doi.org/10.1021/jo00158a03610.1021/jo00158a036Search in Google Scholar
[16] Karimi, B., Seradj, H., & Ebrahimian, G. R. (2000). Mild and efficient conversion of aldehydes to 1,1-diacetates catalyzed with N-bromosuccinimide (NBS). Synlett, 2000, 623–624. DOI: 10.1055/s-2000-6616. http://dx.doi.org/10.1055/s-2000-661610.1055/s-2000-6616Search in Google Scholar
[17] Li, Y. Q. (2000). A rapid and convenient synthesis of 1,1-diacetates from aldehydes and acetic anhydride catalyzed by PVC-FeCl3 catalyst. Synthetic Communications, 30, 3913–3917. DOI: 10.1080/00397910008086948. http://dx.doi.org/10.1080/0039791000808694810.1080/00397910008086948Search in Google Scholar
[18] Liu, Q., Ai, H. M., & Feng, S. A. (2012). Ultrasound-assisted synthesis of acylals from aldehydes using Mg(CH3SO3)2-HOAC. Synthetic Communications, 42, 122–127. DOI: 10.1080/00397911.2010.523150. http://dx.doi.org/10.1080/00397911.2010.52315010.1080/00397911.2010.523150Search in Google Scholar
[19] Massah, A. R., Kalbasi, R. J., & Shafiei, A. (2012). ZSM-5-SO3H as a novel, efficient, and reusable catalyst for the chemoselective synthesis and deprotection of 1,1-diacetates under eco-friendly conditions. Monatshefte für Chemie — Chemical Monthly, 143, 643–652. DOI: 10.1007/s00706-011-0646-8. http://dx.doi.org/10.1007/s00706-011-0646-810.1007/s00706-011-0646-8Search in Google Scholar
[20] Mouriño, A. (1978). An improved synthesis of 1α,3β-dihydroxycholesta-5,7-diene. Synthic Communicatins, 8, 117–125. DOI: 10.1080/00397917808062105. http://dx.doi.org/10.1080/0039791780806210510.1080/00397917808062105Search in Google Scholar
[21] Nagy, N. M., Jakab, M. A., Konya, J., & Antus, S. (2002). Convenient preparation of 1,1-diacetates from aromatic aldehydes catalysed by zinc-montmorillonite. Applied Clay Science, 21, 213–216. DOI: 10.1016/s0169-1317(02)00066-2. http://dx.doi.org/10.1016/S0169-1317(02)00066-210.1016/S0169-1317(02)00066-2Search in Google Scholar
[22] Nouri Sefat, M., Deris, A., & Niknam, K. (2011). Preparation of silica-bonded propyl-diethylene-triamine-N-sulfamic acid as a recyclable catalyst for chemoselective synthesis of 1,1-diacetates. Chinese Journal of Chemistry, 29, 2361–2367. DOI: 10.1002/cjoc.201180403. http://dx.doi.org/10.1002/cjoc.20118040310.1002/cjoc.201180403Search in Google Scholar
[23] Pourmousavi, S. A., & Zinati, Z. (2009). H2SO4-silica as an efficient and chemoselective catalyst for the synthesis of acylal from aldehydes under solvent-free conditions. Turkish Journal of Chemistry, 33, 385–392. DOI: 10.3906/kim-0805-45. 10.3906/kim-0805-45Search in Google Scholar
[24] Rabindran Jermy, B., & Pandurangan, A. (2008). Synthesis of geminal diacetates (acylals) using heterogeneous H3PW12O40 supported MCM-41 molecular sieves. Catalysis Communications, 9, 577–583. DOI: 10.1016/j.catcom.2007.02.016. http://dx.doi.org/10.1016/j.catcom.2007.02.01610.1016/j.catcom.2007.02.016Search in Google Scholar
[25] Reddy, A. V., Ravinder, K., Reddy, V. L. N., Ravinkanth, V., & Yenkateswarlu, Y. (2003). Amberlyst-15-catalyzed efficient synthesis of 1,1-diacetates from aldehydes. Synthetic Communications, 33, 1531–1536. DOI: 10.1081/scc-120018771. http://dx.doi.org/10.1081/SCC-12001877110.1081/SCC-120018771Search in Google Scholar
[26] Romanelli, G. P., Thomas, H. J., Baronettic, G. T., & Autino, J. C. (2003). Solvent-free catalytic preparation of 1,1-diacetates from aldehydes using a Wells-Dawson acid (H6P2W18O62 · 24H2O). Tetrahedron Letters, 44, 1301–1303. DOI: 10.1016/s0040-4039(02)02817-4. http://dx.doi.org/10.1016/S0040-4039(02)02817-410.1016/S0040-4039(02)02817-4Search in Google Scholar
[27] Roy, S. C., & Banerjee, B. (2002). A mild and efficient method for the chemoselective synthesis of acylals from aldehydes and their deprotections catalysed by ceric ammonium nitrate. Synlett, 2002, 1677–1688. DOI: 10.1055/s-2002-34243. http://dx.doi.org/10.1055/s-2002-3424310.1055/s-2002-34243Search in Google Scholar
[28] Saini, A., Kumar, S., & Sandhu, J. S. (2007). RuCl3 · xH2O: A new efficient catalyst for facile preparation of 1,1-diacetates from aldehydes. Synthetic Communications, 38, 106–113. DOI: 10.1080/00397910701650831. http://dx.doi.org/10.1080/0039791070165083110.1080/00397910701650831Search in Google Scholar
[29] Sajjadifar, S., Mirshokraie, S. A., Javaherneshan, N., & Louie, O. (2012). SBSA as a new and efficient catalyst for the one-pot green synthesis of benzimidazole derivatives at room temperature. American Journal of Organic Chemistry, 2, 1–6. DOI: 10.5923/j.ajoc.20120202.01. http://dx.doi.org/10.5923/j.ajoc.20120202.0110.5923/j.ajoc.20120202.01Search in Google Scholar
[30] Sajjadifar, S. (2013). Boron sulfonic acid (2008–2012). International Journal of ChemTech Research, 5, 385–389. Search in Google Scholar
[31] Sajjadifar, S., & Louie, O. (2013). Regioselective thiocyanation of aromatic and heteroaromatic compounds by using boron sulfonic acid as a new, efficient, and cheap catalyst in water. Journal of Chemistry, 2013, 674946. DOI: 10.1155/2013/674946. 10.1155/2013/674946Search in Google Scholar
[32] Sajjadifar, S., & Rezayati, S. (2013). A simple and new method for the synthesis of 1,5-benzodiazepine derivatives catalyzed by boron sulfonic acid in solvent H2O/EtOH. International Journal of ChemTech Research, 5, 1964–1968. Search in Google Scholar
[33] Sajjadifar, S., Khosravani, E., & Shiri, S. (2013). Benzimidazole synthesis by using boron sulfonic acid as a new and efficient catalyst at room temperature. International Journal of ChemTech Research, 5, 1969–1976. Search in Google Scholar
[34] Sandberg, M., & Sydnes, L. K. (1998). The chemistry of acylals. Part II. Formation of nitriles by treatment of acylals with trimethylsilyl azide in the presence of a Lewis acid. Tetrahedron Letters, 39, 6361–6364. DOI: 10.1016/s0040-4039(98)01309-4. http://dx.doi.org/10.1016/S0040-4039(98)01309-410.1016/S0040-4039(98)01309-4Search in Google Scholar
[35] Sandberg, M., & Sydnes, L. K. (2000). The chemistry of acylals. 3. Cyanohydrin esters from acylals with cyanide reagents. Organic Letters, 2, 687–689. DOI: 10.1021/ol005535b. http://dx.doi.org/10.1021/ol005535b10.1021/ol005535bSearch in Google Scholar
[36] Sharifi, A., Abaee, M. S., Tavakkoli, A., & Mirzaei, M. (2008). An efficient and general procedure for room-temperature synthesis of benzofurans under solvent-free conditions using KF/Al2O3. Journal of the Iranian Chemical Society, 5, S113–S117. http://dx.doi.org/10.1007/BF0324649910.1007/BF03246499Search in Google Scholar
[37] Shelke, K., Sapkal, S., Kategaonkar, A., Shingate, B., & Shingare, M. S. (2009). An efficient and green procedure for the preparation of acylals from aldehydes catalyzed by alum [KAl(SO4)2 · 12H2O]. South African Journal of chemistry, 62, 109–112. Search in Google Scholar
[38] Smitha, G., & Reddy, C. S. (2003). A facile and efficient ZrCl4 catalyzed conversion of aldehydes to geminal-diacetates and dipivalates and their cleavage. Tetrahedron, 59, 9571–9576. DOI: 10.1016/j.tet.2003.10.002. http://dx.doi.org/10.1016/j.tet.2003.10.00210.1016/j.tet.2003.10.002Search in Google Scholar
[39] Sydness, L. K., & Sandberg, M. (1997). The chemistry of acylals. Part I. The reactivity of acylals towards Grignard and organolithium reagents. Tetrahedron, 53, 12679–12690. DOI: 10.1016/s0040-4020(97)00789-8. 10.1016/S0040-4020(97)00789-8Search in Google Scholar
[40] Tamami, B., Firouzabadi, H., Ebrahimzadeh, F., & Fadavi, A. (2009). Poly (N-bromoacrylamide): an efficient and useful catalyst for the protection of carbonyl compounds as dithiolanes, dithianes and oxathiolanes under solvent-free and microwave conditions. Journal of the Iranian Chemical Society, 6, 722–728. http://dx.doi.org/10.1007/BF0324616210.1007/BF03246162Search in Google Scholar
[41] van Heerden, F. R., Huyser, J. J., Bradley, D., Williams, G., & Holzapfel, C. W. (1998). Palladium-catalysed substitution reactions of geminal allylic diacetates. Tetrahedron Letters, 39, 5281–5284. DOI: 10.1016/s0040-4039(98)01000-4. http://dx.doi.org/10.1016/S0040-4039(98)01000-410.1016/S0040-4039(98)01000-4Search in Google Scholar
[42] Yadav, J. S., Reddy, B. V. S., & Srihari, P. (2001). Scandium triflate catalyzed allylation of acetals and gem-diacetates: A facile synthesis of homoallyl ethers and acetates. Synlett, 2001, 673–675. DOI: 10.1055/s-2001-13379. 10.1055/s-2001-13379Search in Google Scholar
[43] Ying, J. Y., Mehnert, C. P., & Wong, M. S. (1999). Synthesis and applications of supramolecular-templated mesoporous materials. Angewwandte Chemie International Edition, 38, 56–77. DOI: 10.1002/(sici)1521-3773(19990115)38:1/2〈56::aid-anie56〉3.0.co;2-e. http://dx.doi.org/10.1002/(SICI)1521-3773(19990115)38:1/2<56::AID-ANIE56>3.0.CO;2-E10.1002/(SICI)1521-3773(19990115)38:1/2<56::AID-ANIE56>3.0.CO;2-ESearch in Google Scholar
[44] Zare, A., Hasaninejad, A., Rostami, E., Moosavi-Zare, A. R., Merajoddin, M., Arghoon, A., Pishahang, N., & Shekouhy, M. (2009). LiHSO4/SiO2 as a new, efficient and reusable catalytic system for the chemoselective conversion of aldehydes to acylals under solvent-free conditions. E-Journal of Chemistry, 6, S390–S396. DOI: 10.1155/2009/953175. http://dx.doi.org/10.1155/2009/95317510.1155/2009/953175Search in Google Scholar
[45] Zolfigol, M. A., Vahedi, H. H., Massoudi, A. H., Sajjadifar, S., Louie, O., & Javaherneshan, N. (2011). Mild and efficient one pot synthesis of benzoimidazoles from aldehyde by using BSA a new catalyst. Clinical Biochemistry, 44, S219. DOI: 10.1016/j.clinbiochem.2011.08.973. http://dx.doi.org/10.1016/j.clinbiochem.2011.08.97310.1016/j.clinbiochem.2011.08.973Search in Google Scholar
[46] Zolfigol, M. A., Khazaei, A., Mokhlesi, M., Vahedi, H., Sajadifar, S., & Pirveysian, M. (2012). Heterigeneous and catalytic thiocyanation of aromatic compounds in aqueous media. Phosphorus, Sulfur, and Silicon and the Related Elements, 187, 295–304. DOI: 10.1080/10426507.2011.610846. http://dx.doi.org/10.1080/10426507.2011.61084610.1080/10426507.2011.610846Search in Google Scholar
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Determination of mercury species using thermal desorption analysis in AAS
- Non-enzymatic hydrogen peroxide sensor based on a nanoporous gold electrode modified with platinum nanoparticles
- Production and application of amylases of Rhizopus oryzae and Rhizopus microsporus var. oligosporus from industrial waste in acquisition of glucose
- Effect of salicin on induction and carbon catabolite repression of endoxylanase synthesis in Penicillium janthinellum MTCC 10889
- Recovery of acetaminophen from aqueous solutions using a supported liquid membrane based on a quaternary ammonium salt as ionophore
- Enantioseparation of mandelic acid enantiomers in ionic liquid aqueous two-phase extraction systems
- Fatty acid methyl ester production from acid oil using silica sulfuric acid: Process optimization and reaction kinetics
- Mineral constituents of edible parasol mushroom Macrolepiota procera (Scop. ex Fr.) Sing and soils beneath its fruiting bodies collected from a rural forest area
- Evaluation of antioxidants in Dong quai (Angelica sinensis) and its dietary supplements
- Electrochemical storage properties of polyaniline-, poly(N-methylaniline)-, and poly(N-ethylaniline)-coated pencil graphite electrodes
- Controllable one-step synthesis of ZnO nanostructures using molybdophosphoric acid
- I2-mediated α-selective Ferrier glycosylation approach to synthesis of O-glycosyl amino acids
- Synthesis of 1,1-diacetates catalysed by silica-supported boron sulfonic acid under solvent-free conditions and ambient temperature
- Development of oxopyrrolidine-based anti-cancer compounds: DNA binding, in silico, cell line studies, drug-likeness and mechanism at supra-molecular level
- Clay and charcoal composites: characterisation and application of factorial design analysis for dye adsorption
- Role of thermoxidation and depolymerisation in the ageing of systems paper/gum arabic/historical ink
- Natural organic acids promoted Beckmann rearrangement: Green and expeditious synthesis of amides under solvent-free conditions
Articles in the same Issue
- Determination of mercury species using thermal desorption analysis in AAS
- Non-enzymatic hydrogen peroxide sensor based on a nanoporous gold electrode modified with platinum nanoparticles
- Production and application of amylases of Rhizopus oryzae and Rhizopus microsporus var. oligosporus from industrial waste in acquisition of glucose
- Effect of salicin on induction and carbon catabolite repression of endoxylanase synthesis in Penicillium janthinellum MTCC 10889
- Recovery of acetaminophen from aqueous solutions using a supported liquid membrane based on a quaternary ammonium salt as ionophore
- Enantioseparation of mandelic acid enantiomers in ionic liquid aqueous two-phase extraction systems
- Fatty acid methyl ester production from acid oil using silica sulfuric acid: Process optimization and reaction kinetics
- Mineral constituents of edible parasol mushroom Macrolepiota procera (Scop. ex Fr.) Sing and soils beneath its fruiting bodies collected from a rural forest area
- Evaluation of antioxidants in Dong quai (Angelica sinensis) and its dietary supplements
- Electrochemical storage properties of polyaniline-, poly(N-methylaniline)-, and poly(N-ethylaniline)-coated pencil graphite electrodes
- Controllable one-step synthesis of ZnO nanostructures using molybdophosphoric acid
- I2-mediated α-selective Ferrier glycosylation approach to synthesis of O-glycosyl amino acids
- Synthesis of 1,1-diacetates catalysed by silica-supported boron sulfonic acid under solvent-free conditions and ambient temperature
- Development of oxopyrrolidine-based anti-cancer compounds: DNA binding, in silico, cell line studies, drug-likeness and mechanism at supra-molecular level
- Clay and charcoal composites: characterisation and application of factorial design analysis for dye adsorption
- Role of thermoxidation and depolymerisation in the ageing of systems paper/gum arabic/historical ink
- Natural organic acids promoted Beckmann rearrangement: Green and expeditious synthesis of amides under solvent-free conditions