Home Non-enzymatic hydrogen peroxide sensor based on a nanoporous gold electrode modified with platinum nanoparticles
Article
Licensed
Unlicensed Requires Authentication

Non-enzymatic hydrogen peroxide sensor based on a nanoporous gold electrode modified with platinum nanoparticles

  • Guang Yin EMAIL logo , Ling Xing , Xiu-Ju Ma and Jun Wan
Published/Copyright: December 20, 2013
Become an author with De Gruyter Brill

Abstract

A novel non-enzymatic electrochemical sensor based on a nanoporous gold electrode modified with platinum nanoparticles was constructed for the determination of hydrogen peroxide (H2O2). Platinum nanoparticles exhibit good electrocatalytic activity towards hydrogen peroxide. The nanoporous gold (NPG) increases the effective surface area and has the capacity to promote electron-transfer reactions. With electrodeposition of Pt nanoparticles (NPs) on the surface of the nanoporous gold, the modified Au electrode afforded a fast, sensitive and selective electrochemical method for the determination of H2O2. The linear range for the detection of H2O2 was from 1.0 × 10−7 M to 2.0 × 10−5 M while the calculated limit of detection was 7.2 × 10−8 M on the basis of the 3σ/slope (σ represents the standard deviation of the blank samples). These findings could lead to the widespread use of electrochemical sensors to detect H2O2.

[1] Albero, B., Sánchez-Brunete, C., & Tadeo, J. L. (2003). Determination of organophosphorus pesticides in fruit juices by matrix solid-phase dispersion and gas chromatography. Journal of Agricultural and Food Chemistry, 51, 6915–6921. DOI: 10.1021/jf030414m. http://dx.doi.org/10.1021/jf030414m10.1021/jf030414mSearch in Google Scholar

[2] Armstrong, F. A., & Wilson, G. S. (2000). Recent developments in faradaic bioelectrochemistry. Electrochimica Acta, 45, 2623–2645. DOI: 10.1016/s0013-4686(00)00342-x. http://dx.doi.org/10.1016/S0013-4686(00)00342-X10.1016/S0013-4686(00)00342-XSearch in Google Scholar

[3] Bönnemann, H., & Richards, R. M. (2001). Nanoscopic metal particles — synthetic methods and potential applications. European Journal of Inorganic Chemistry, 10, 2455–2480. DOI: 10.1002/1099-0682(200109)2001:10〈2455::aid-ejic2455〉3.0.co;2-z. http://dx.doi.org/10.1002/1099-0682(200109)2001:10<2455::AID-EJIC2455>3.0.CO;2-Z10.1002/1099-0682(200109)2001:10<2455::AID-EJIC2455>3.0.CO;2-ZSearch in Google Scholar

[4] Chen, S. H., Yuan, R., Chai, Y. Q., Yin, B., Li, W. J., & Min, L. G. (2009). Amperometric hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase on core-shell organosilica@chitosan nanospheres and multiwall carbon nanotubes composite. Electrochimica Acta, 54, 3039–3046. DOI: 10.1016/j.electacta.2008.12.009. http://dx.doi.org/10.1016/j.electacta.2008.12.00910.1016/j.electacta.2008.12.009Search in Google Scholar

[5] Clark, L. C. (1970). U.S. Patent No. 3539455. Washington, DC. USA: U.S. Patent and Trademark Office. Search in Google Scholar

[6] Gao, Z. Y., Liu, J. L., Chang, J. L., Wu, D. P., He, J. J., Wang, K., Xu, F., & Jiang, K. (2012). Mesocrystalline Cu2O hollow nanocubes: synthesis and application in non-enzymatic amperometric detection of hydrogen peroxide and glucose. CrystEngComm, 14, 6639–6646. DOI: 10.1039/c2ce25498k. http://dx.doi.org/10.1039/c2ce25498k10.1039/c2ce25498kSearch in Google Scholar

[7] Heath, J. R. (1998). Covalency in semiconductor quantum dots. Chemical Society Reviews, 27, 65–71. DOI: 10.1039/a8270 65z. http://dx.doi.org/10.1039/a827065zSearch in Google Scholar

[8] Jia, J. B., Wang, B. Q., Wu, A. G., Cheng, G. J., Li, Z., & Dong, S. J. (2002). A method to construct a thirdgeneration horseradish peroxidase biosensor: Self-assembling gold nanoparticles to three-dimensional sol-gel network. Analytical Chemistry, 74, 2217–2223. DOI: 10.1021/ac011116w. http://dx.doi.org/10.1021/ac011116w10.1021/ac011116wSearch in Google Scholar

[9] Kafi, A. K. M., Wu, G. S., & Chen, A. C. (2008). A novel hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto Au-modified titanium dioxide nanotube arrays. Biosensors and Bioelectronics, 24, 566–571. DOI: 10.1016/j.bios.2008.06.004. http://dx.doi.org/10.1016/j.bios.2008.06.00410.1016/j.bios.2008.06.004Search in Google Scholar

[10] Lases, E. C., Duurkens, V. A. M., Gerritsen, W. B. M., & Haas, F. J. L. M. (2000). Oxidative stress after lung resection therapy — A pilot study. Chest, 117, 999–1003. DOI: 10.1378/chest.117.4.999. http://dx.doi.org/10.1378/chest.117.4.99910.1378/chest.117.4.999Search in Google Scholar

[11] Lewis, L. N. (1993). Chemical catalysis by colloids and clusters. Chemical Reviews, 93, 2693–2730. DOI: 10.1021/cr00024a006. http://dx.doi.org/10.1021/cr00024a00610.1021/cr00024a006Search in Google Scholar

[12] Li, Z. Z., Cui, X. L., Zheng, J. S., Wang, Q. F., & Lin, Y. H. (2007). Effects of microstructure of carbon nanofibers for amperometric detection of hydrogen peroxide. Analytica Chimica Acta, 597, 238–244. DOI: 10.1016/j.aca.2007.06.046. http://dx.doi.org/10.1016/j.aca.2007.06.04610.1016/j.aca.2007.06.046Search in Google Scholar

[13] Lin, J. H., Zhang, L. J., & Zhang, S. S. (2007). Amperometric biosensor based on coentrapment of enzyme and mediator by gold nanoparticles on indium-tin oxide electrode. Analytical Biochemistry, 370, 180–185. DOI: 10.1016/j.ab.2007.06.021. http://dx.doi.org/10.1016/j.ab.2007.06.02110.1016/j.ab.2007.06.021Search in Google Scholar

[14] Link, S., & El-Sayed, M. A. (2003). Optical properties and ultrafast dynamics of metallic nanocrystals. Annual Review of Physical Chemistry, 54, 331–366. DOI: 10.1146/annurev. physchem.54.011002.103759. http://dx.doi.org/10.1146/annurev.physchem.54.011002.10375910.1146/annurev.physchem.54.011002.103759Search in Google Scholar

[15] Liu, G. D., & Lin, Y. H. (2005). Electrochemical sensor for organophosphate pesticides and nerve agents using zirconia nanoparticles as selective sorbents. Analytical Chemistry, 77, 5894–5901. DOI: 10.1021/ac050791t. http://dx.doi.org/10.1021/ac050791t10.1021/ac050791tSearch in Google Scholar

[16] Lu, F. S., Gu, L. R., Meziani, M. J., Wang, X., Luo, P. G., Veca, L. M., Cao, L., & Sun, Y. P. (2009). Advances in bioapplications of carbon nanotubes. Advanced Materials, 21, 139–152. DOI: 10.1002/adma.200801491. http://dx.doi.org/10.1002/adma.20080149110.1002/adma.200801491Search in Google Scholar

[17] Ma, L. P., Yuan, R., Chai, Y. Q., & Chen, S. H. (2009). Amperometric hydrogen peroxide biosensor based on the immobilization of HRP on DNA-silver nanohybrids and PDDAprotected gold nanoparticles. Journal of Molecular Catalysis B: Enzymatic, 56, 215–220. DOI: 10.1016/j.molcatb.2008.05.007. http://dx.doi.org/10.1016/j.molcatb.2008.05.00710.1016/j.molcatb.2008.05.007Search in Google Scholar

[18] Mala Ekanayake, E. M. I., Preethichandra, D. M. G., & Kaneto, K. (2008). Bi-functional amperometric biosensor for low concentration hydrogen peroxide measurements using polypyrrole immobilizing matrix. Sensors and Actuators B: Chemical, 132, 166–171. DOI: 10.1016/j.snb.2008.01.042. http://dx.doi.org/10.1016/j.snb.2008.01.04210.1016/j.snb.2008.01.042Search in Google Scholar

[19] Niwa, O., Horiuchi, T., Kurita, R., & Torimitsu, K. (1998). On-line electrochemical sensor for selective continuous measurement of acetylcholine in cultured brain tissue. Analytical Chemistry, 70, 1126–1132. DOI: 10.1021/ac970257o. http://dx.doi.org/10.1021/ac970257o10.1021/ac970257oSearch in Google Scholar

[20] Roucoux, A., Schulz, J., & Patin, H. (2002). Reduced transition metal colloids: A novel family of reusable catalysts? Chemical Reviews, 102, 3757–3778. DOI: 10.1021/cr010350j. http://dx.doi.org/10.1021/cr010350j10.1021/cr010350jSearch in Google Scholar

[21] Roy, S., & Gao, Z. Q. (2009). Nanostructure-based electrical biosensors. Nano Today, 4, 318–334. DOI: 10.1016/j.nantod.2009.06.003. http://dx.doi.org/10.1016/j.nantod.2009.06.00310.1016/j.nantod.2009.06.003Search in Google Scholar

[22] Ruiz, B. L., Dempsey, E., Hua, C., Smyth, M. R., & Wang, J. (1993). Development of amperometric sensors for choline, acetylcholine and arsenocholine. Analytica Chimica Acta, 273, 425–430. DOI: 10.1016/0003-2670(93)80186-o. http://dx.doi.org/10.1016/0003-2670(93)80186-O10.1016/0003-2670(93)80186-OSearch in Google Scholar

[23] Thenmozhi, K., & Narayanan, S. S. (2007). Amperometric hydrogen peroxide sensor based on a sol-gel-derived ceramic carbon composite electrode with toluidine blue covalently immobilized using 3-aminopropyltrimethoxysilane. Analytical and Bioanalytical Chemistry, 387, 1075–1082. DOI: 10.1007/s00216-006-0992-2. http://dx.doi.org/10.1007/s00216-006-0992-210.1007/s00216-006-0992-2Search in Google Scholar PubMed

[24] Thomé-Duret, V., Reach, G., Gangnerau, M. N., Lemonnier, F., Klein, J. C., Zhang, Y. N., Hu, Y. B., & Wilson, G. S. (1996). Use of a subcutaneous glucose sensor to detect decreases in glucose concentration prior to observation in blood. Analytical Chemistry, 68, 3822–3826. DOI: 10.1021/ac960069i. http://dx.doi.org/10.1021/ac960069i10.1021/ac960069iSearch in Google Scholar PubMed

[25] Vianello, F., Zennaro, L., & Rigo, A. (2007). A coulometric biosensor to determine hydrogen peroxide using a monomolecular layer of horseradish peroxidase immobilized on a glass surface. Biosensors and Bioelectronics, 22, 2694–2699. DOI: 10.1016/j.bios.2006.11.007. http://dx.doi.org/10.1016/j.bios.2006.11.00710.1016/j.bios.2006.11.007Search in Google Scholar PubMed

[26] Wang, H. S., Pan, Q. X., & Wang, G. X. (2005). A biosensor based on immobilization of horseradish peroxidase in chitosan matrix cross-linked with glyoxal for amperometric determination of hydrogen peroxide. Sensors, 5, 266–276. DOI: 10.3390/s5040266. http://dx.doi.org/10.3390/s504026610.3390/s5040266Search in Google Scholar

[27] Xu, B., Ye, M. L., Yu, Y. X., & Zhang, W. D. (2010). A highly sensitive hydrogen peroxide amperometric sensor based on MnO2-modified vertically aligned multiwalled carbon nanotubes. Analytica Chimica Acta, 674, 20–26. DOI: 10.1016/j.aca.2010.06.004. http://dx.doi.org/10.1016/j.aca.2010.06.00410.1016/j.aca.2010.06.004Search in Google Scholar PubMed

[28] Xu, F. G., Sun, Y. J., Zhang, Y., Shi, Y., Wen, Z. W., & Li, Z. H. (2011). Graphene-Pt nanocomposite for nonenzymatic detection of hydrogen peroxide with enhanced sensitivity. Electrochemistry Communications, 13, 1131–1134. DOI: 10.1016/j.elecom.2011.07.017. http://dx.doi.org/10.1016/j.elecom.2011.07.01710.1016/j.elecom.2011.07.017Search in Google Scholar

[29] Yang, L., Janle, E., Huang, T. H., Gitzen, J., Kissinger, P. T., Vreeke, M., & Heller, A. (1995). Applications of “wired” peroxidase electrodes for peroxidase determination in liquid chromatography coupled to oxidase immobilized enzyme reactors. Analytical Chemistry, 67, 1326–1331 DOI: 10.1021/ac00104a005. http://dx.doi.org/10.1021/ac00104a00510.1021/ac00104a005Search in Google Scholar

[30] Yang, M. H., Yang, Y., Yang, H. F., Shen, G. L., & Yu, R. Q. (2006). Layer-by-layer self assembled multilayer films of carbon nanotubes and platinum nanoparticles with polyelectrolyte for the fabrication of biosensors. Biomaterials, 27, 246–255. DOI: 10.1016/j.biomaterials.2005.05.077. http://dx.doi.org/10.1016/j.biomaterials.2005.05.07710.1016/j.biomaterials.2005.05.077Search in Google Scholar PubMed

[31] Yorek, M. A. (2003). The role of oxidative stress in diabetic vascular and neural disease. Free Radical Research, 37, 471–480. DOI: 10.1080/1071576031000083161. http://dx.doi.org/10.1080/107157603100008316110.1080/1071576031000083161Search in Google Scholar PubMed

[32] You, T. N., Niwa, O., Tomita, M., & Hirono, S. (2003). Characterization of platinum nanoparticle-embedded carbon film electrode and its detection of hydrogen peroxide. Analytical Chemistry, 75, 2080–2085. DOI: 10.1021/ac026337w. http://dx.doi.org/10.1021/ac026337w10.1021/ac026337wSearch in Google Scholar PubMed

[33] Zhang, H. L., Lai, G. S., Han, D. Y., & Yu, A. M. (2008a). An amperometric hydrogen peroxide biosensor based on immobilization of horseradish peroxidase on an electrode modified with magnetic dextran microspheres. Analytical and Bioanalytical Chemistry, 390, 971–977. DOI: 10.1007/s00216-007-1748-3. http://dx.doi.org/10.1007/s00216-007-1748-310.1007/s00216-007-1748-3Search in Google Scholar PubMed

[34] Zhang, T. T., Yuan, R., Chai, Y. Q., Li, W. J., & Ling, S. J. (2008b). A novel nonenzymatic hydrogen peroxide sensor based on a polypyrrole nanowire-copper nanocomposite modified gold electrode. Sensors, 8, 5141–5152. DOI: 10.3390/s8085141. http://dx.doi.org/10.3390/s808514110.3390/s8085141Search in Google Scholar PubMed PubMed Central

[35] Zhou, G. Z., & Ju, H. X. (2004). Electrogenerated chemiluminescence from a CdSe nanocrystal film and its sensing application in aqueous solution. Analytical Chemistry, 76, 6871–6876. DOI: 10.1021/ac049012j. http://dx.doi.org/10.1021/ac049012j10.1021/ac049012jSearch in Google Scholar PubMed

[36] Zhou, K. F., Zhu, Y. H., Yang, X. L., Luo, J., Li, C. Z., & Luan, S. R. (2010). A novel hydrogen peroxide biosensor based on Au-graphene-HRP-chitosan biocomposites. Electrochimica Acta, 55, 3055–3060. DOI: 10.1016/j.electacta.2010.01.035. http://dx.doi.org/10.1016/j.electacta.2010.01.03510.1016/j.electacta.2010.01.035Search in Google Scholar

Published Online: 2013-12-20
Published in Print: 2014-4-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Determination of mercury species using thermal desorption analysis in AAS
  2. Non-enzymatic hydrogen peroxide sensor based on a nanoporous gold electrode modified with platinum nanoparticles
  3. Production and application of amylases of Rhizopus oryzae and Rhizopus microsporus var. oligosporus from industrial waste in acquisition of glucose
  4. Effect of salicin on induction and carbon catabolite repression of endoxylanase synthesis in Penicillium janthinellum MTCC 10889
  5. Recovery of acetaminophen from aqueous solutions using a supported liquid membrane based on a quaternary ammonium salt as ionophore
  6. Enantioseparation of mandelic acid enantiomers in ionic liquid aqueous two-phase extraction systems
  7. Fatty acid methyl ester production from acid oil using silica sulfuric acid: Process optimization and reaction kinetics
  8. Mineral constituents of edible parasol mushroom Macrolepiota procera (Scop. ex Fr.) Sing and soils beneath its fruiting bodies collected from a rural forest area
  9. Evaluation of antioxidants in Dong quai (Angelica sinensis) and its dietary supplements
  10. Electrochemical storage properties of polyaniline-, poly(N-methylaniline)-, and poly(N-ethylaniline)-coated pencil graphite electrodes
  11. Controllable one-step synthesis of ZnO nanostructures using molybdophosphoric acid
  12. I2-mediated α-selective Ferrier glycosylation approach to synthesis of O-glycosyl amino acids
  13. Synthesis of 1,1-diacetates catalysed by silica-supported boron sulfonic acid under solvent-free conditions and ambient temperature
  14. Development of oxopyrrolidine-based anti-cancer compounds: DNA binding, in silico, cell line studies, drug-likeness and mechanism at supra-molecular level
  15. Clay and charcoal composites: characterisation and application of factorial design analysis for dye adsorption
  16. Role of thermoxidation and depolymerisation in the ageing of systems paper/gum arabic/historical ink
  17. Natural organic acids promoted Beckmann rearrangement: Green and expeditious synthesis of amides under solvent-free conditions
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0473-y/html
Scroll to top button