Startseite Anoxic granulated biomass and its storage
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Anoxic granulated biomass and its storage

  • Miloslav Drtil EMAIL logo , Lenka Babjakova , Zuzana Imreova und Ivana Jonatova
Veröffentlicht/Copyright: 21. August 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Laboratory experiments involving shutdown and repeated start-up of a denitrification USB reactor with granulated anoxic biomass were conducted in order to find suitable conditions for a safe storage period of the biomass. Anoxic granulated biomass stored under anaerobic conditions for a half year period at 6°C and for a half month period at 18–20°C retained its activity and granular morphology. Storage of anoxic granules under anaerobic conditions for a half year period at 18–20°C led to the loss of the biomass original activity and a significant portion of the granules disintegrated. Anoxic granulated biomass stored for a one and a half month period under endogenous anoxic conditions at 18–20°C retained its activity and granular morphology. A two month storage under endogenous anoxic conditions at 18–20°C was too long and the shutdown of the reactor had to be followed by repeated anoxic granulation. Minimum loading of the USB reactor with N-NO3 to maintain endogenous anoxic conditions in the sludge bed was in the range of 0.06–0.1 kg of N-NO3 per m3 per day. Restart of the USB reactor can be accelerated by an addition of anaerobic granulated biomass.

[1] APHA (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington, DC, USA: American Public Health Association. Suche in Google Scholar

[2] Babjaková, L., Jonatová, I., Imreová, Z., & Drtil, M. (2013). The influence of volume and surface loading of denitrification reactor with granulated biomass on the denitrification degree of wastewater from sewage treatment plant. Chemické Listy/Chemical Letters, 107, 223–227. (in Slovak) Suche in Google Scholar

[3] Bhatti, Z. I., Sumida, K., Rouse, J. D., & Furukawa, K. (2001). Characterization of denitrifying granular sludge treating soft groundwater in upflow sludge-blanket reactor. Journal of Bioscience and Bioengineering, 91, 373–377. DOI: 10.1016/S1389-1723(01)80154-7. 10.1016/S1389-1723(01)80154-7Suche in Google Scholar

[4] Borzacconi, L., Ottonello, G., Castelló, E., Pelaez, H., Gazzola, A., & Viñas, M. (1999). Denitrification in a carbon and nitrogen removal system for leachate treatment: Performance of a upflow sludge blanket (USB) reactor. Water Science & Technology, 40(8), 145–151. DOI: 10.1016/s0273-1223(99)00620-4. http://dx.doi.org/10.1016/S0273-1223(99)00620-410.1016/S0273-1223(99)00620-4Suche in Google Scholar

[5] Cuervo López, F. M., Martinez, F., Gutiérrez-Rojas, M., Noyola, R. A., & Gómez, J. (1999). Effect of nitrogen loading rate and carbon source on denitrification and sludge settleability in upflow anaerobic sludge blanket (UASB) reactors. Water Science & Technology, 40(8), 123–130. DOI: 10.1016/s0273-1223(99)00617-4. http://dx.doi.org/10.1016/S0273-1223(99)00617-410.1016/S0273-1223(99)00617-4Suche in Google Scholar

[6] Eiroa, M., Kennes, C., & Veiga, M. C. (2004). Formaldehyde and urea removal in a denitrifying granular sludge blanket reactor. Water Research, 38, 3495–3502. DOI: 10.1016/j.watres.2004.04.055. http://dx.doi.org/10.1016/j.watres.2004.04.05510.1016/j.watres.2004.04.055Suche in Google Scholar

[7] Etchebehere, C., Errazquin, M. I., Cabezas, A., Pianzzola, M. J., Mallo, M., Lombardi, P., Ottonello, G., Borzacconi, L., & Muxi, L. (2002). Sludge bed development in denitrifying reactors using different inocula-performance and microbiological aspects. Water Science & Technology, 45(10), 365–370. 10.2166/wst.2002.0370Suche in Google Scholar

[8] Etchebehere, C., Cabezas, A., Dabert, P., & Muxi, L. (2003). Evolution of the bacterial community during granules formation in denitrifying reactors followed by molecular, cultureindependent techniques. Water Science & Technology, 48(6), 75–79. 10.2166/wst.2003.0360Suche in Google Scholar

[9] Franco, A., Roca, E., & Lema, J. M. (2006). Granulation in high-load denitrifying upflow sludge bed (USB) pulsed reactor. Water Research, 40, 871–880. DOI: 10.1016/j.watres.2005.11.044. http://dx.doi.org/10.1016/j.watres.2005.11.04410.1016/j.watres.2005.11.044Suche in Google Scholar

[10] Galbová, K., Pagáčová, P., Drtil, M., & Jonatová, I. (2010). Comparison of anoxic granulation in USB reactors with various inocula. Chemical Papers, 64, 132–138. DOI: 10.2478/s11696-009-0119-2. http://dx.doi.org/10.2478/s11696-009-0119-210.2478/s11696-009-0119-2Suche in Google Scholar

[11] Green, M., Tarre, S., Shnizer, M., Bogdan, B., Armon, R., & Shelef, R. (1994). Groundwater denitrification using an up-flow sludge blanket reactor. Water Research, 28, 631–637. DOI: 10.1016/0043-1354(94)90013-2. http://dx.doi.org/10.1016/0043-1354(94)90013-210.1016/0043-1354(94)90013-2Suche in Google Scholar

[12] Hulshoff Pol, L. W. (1989). The phenomenon of granulation of anaerobic sludge. Ph.D. thesis, Agricultural University Wageningen, The Netherlands. Suche in Google Scholar

[13] Imreová, Z., Drtil, M., Babjaková, L., & Pavúk, J. (2013). Anoxic granulated biomass as biocatalyst of drinking water and wastewater denitrification. Chemické Listy/Chemical Letters, 107, 479–485. (in Slovak) Suche in Google Scholar

[14] Jin, X. B., Wang, F., Liu, G. H., & Yan, N. (2012). A key cultivation technology for denitrifying granular sludge. Process Biochemistry, 47, 1122–1128. DOI: 10.1016/j.procbio.2012.04.001. http://dx.doi.org/10.1016/j.procbio.2012.04.00110.1016/j.procbio.2012.04.001Suche in Google Scholar

[15] Kratochvíl, K., Drtil, M., Hutňan, M., Bilanin, M., Derco, J., & Fargašová, A. (1997). Characteristics of granulated denitrification biomass in USB reactor. Vodní hospodřství/Water Management, 47, 23–26. (in Slovak) Suche in Google Scholar

[16] Lettinga, G., van Velsen, A. F. M., Hobma, S. W., de Zeeuw, W., & Klapwijk, A. (1980). Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnology and Bioengineering, 22, 699–734. DOI: 10.1002/bit.260220402. http://dx.doi.org/10.1002/bit.26022040210.1002/bit.260220402Suche in Google Scholar

[17] Lettinga, G., & Hulshoff Pol, L. W. (1986). Advanced reactor design, operation and economy. Water Science & Technology, 18(12), 99–108. 10.2166/wst.1986.0166Suche in Google Scholar

[18] Lettinga, G., & Hulshoff Pol, L. W. (Eds.) (1990). Anaerobic reactor technology. In International Course on Anaerobic Waste Treatment, June 25–August 3, 1990. IHE Delft, Agricultural University Wageningen. Suche in Google Scholar

[19] Pagáčová, P., Drtil, M., & Galbová, K. (2009). Granulation of activated sludge in laboratory upflow sludge blanket reactor. Chemical Papers, 63, 125–130. DOI: 10.2478/s11696-008-0092-1. http://dx.doi.org/10.2478/s11696-008-0092-110.2478/s11696-008-0092-1Suche in Google Scholar

[20] Pagáčová, P., Galbová, K., Drtil, M., & Jonatová, I., (2010). Denitrification in USB reactor with granulated biomass. Bioresource Technology, 101, 150–156. DOI: 10.1016/j.biortech.2009.08.021. http://dx.doi.org/10.1016/j.biortech.2009.08.02110.1016/j.biortech.2009.08.021Suche in Google Scholar

[21] Ruiz, G., Jeison, D., & Chamy, R. (2006). Development of denitrifying and methanogenic activities in USB reactors for treatment of wastewater: Effect of COD/N ratio. Process Biochemistry, 41, 1338–1342. DOI: 10.1016/j.procbio.2006.01.007. http://dx.doi.org/10.1016/j.procbio.2006.01.00710.1016/j.procbio.2006.01.007Suche in Google Scholar

[22] Tarre, S., & Green, M. (1994). Precipitation potential as a major factor in the formation of granular sludge in an upflow sludge-blanket reactor for denitrification of drinking water. Applied Microbiology and Biotechnology, 42, 482–486. DOI: 10.1007/bf00902761. http://dx.doi.org/10.1007/BF0090276110.1007/BF00902761Suche in Google Scholar

[23] van der Hoek, J. P., & Klapwijk, A. (1987). Nitrate removal from ground water. Water Research, 21, 989–997. DOI: 10.1016/s0043-1354(87)80018-0. http://dx.doi.org/10.1016/S0043-1354(87)80018-010.1016/S0043-1354(87)80018-0Suche in Google Scholar

[24] van der Hoek, J. P., Latour, P. J. M., & Klapwijk, A. (1987). Denitrification with methanol in the presence of high salt concentrations and at high pH levels. Applied Microbiology and Biotechnology, 27, 199–205. DOI: 10.1007/bf00251945. http://dx.doi.org/10.1007/BF0025194510.1007/BF00251945Suche in Google Scholar

[25] van der Hoek, J. P., Latour, P. J. M., & Klapwijk, A. (1988a). Effect of hydraulic residence time on microbial sulfide production in an upflow sludge blanket denitrification reactor fed with methanol. Applied Microbiology and Biotechnology, 28, 493–499. DOI: 10.1007/bf00268221. http://dx.doi.org/10.1007/BF0026822110.1007/BF00268221Suche in Google Scholar

[26] van der Hoek, J. P., van der Ven, P. J. M., & Klapwijk A. (1988b). Combined ion exchange/biological denitrification for nitrate removal from ground water under different process conditions. Water Research, 22, 679–684. DOI: 10.1016/0043-1354(88)90178-9. http://dx.doi.org/10.1016/0043-1354(88)90178-910.1016/0043-1354(88)90178-9Suche in Google Scholar

[27] Wu, W. M., Jain, M. K., Thiele, J. H., & Zeikus, J. G. (1995). Effect of storage on the performance of methanogenic granules. Water Research, 29, 1445–1452. DOI: 10.1016/0043-1354(94)00305-q. http://dx.doi.org/10.1016/0043-1354(94)00305-Q10.1016/0043-1354(94)00305-QSuche in Google Scholar

Published Online: 2013-8-21
Published in Print: 2013-12-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0447-0/html?lang=de
Button zum nach oben scrollen