Home Airlift reactor — membrane extraction hybrid system for aroma production
Article
Licensed
Unlicensed Requires Authentication

Airlift reactor — membrane extraction hybrid system for aroma production

  • Mário Mihaľ EMAIL logo , Sean Gavin and Jozef Markoš
Published/Copyright: August 21, 2013
Become an author with De Gruyter Brill

Abstract

In recent times, environmental production methods and organic products are increasingly sought after in food, perfume, and cosmetic industries, where the products are consumed or come into direct contact with humans. One such additive is 2-phenylethanol, an alcoholic aromatic rose like smell compound, mainly used as a flavor and aroma. 2-Phenylethanol can be produced by bioconversion from l-phenylalanine using Saccharomyces cerevisiae. This type of biotransformation is strongly limited by product inhibition which allows reaching the maximum concentration of 2-phenylethanol, 4 g L−1, in an ordinary batch, fed-batch, or chemostat bioreactor. The main aim of the presented work was to study the possible yield increase of 2-phenylethanol in a hybrid system consisting of membrane extraction performed by a hollow fiber membrane module immersed in the downcomer of an airlift reactor. Such hybrid system can be used to remove 2-phenylethanol from the fermentation medium and thus to overcome the product inhibition of biotransformation. In this paper, the influence of biomass on membrane extraction of 2-phenylethanol from aqueous solution in an airlift reactor to alkanes at different operational conditions was studied. The measured extraction kinetics was compared with the predictions obtained by a mathematical model. Hydrodynamics of the hybrid system was also studied.

[1] Baudot, A., Floury, J., & Smorenburg, H., E. (2001). Liquidliquid extraction of aroma compounds with hollow fiber con tactor. AIChE Journal, 47, 1780–1793. DOI: 10.1002/aic.690470810. http://dx.doi.org/10.1002/aic.69047081010.1002/aic.690470810Search in Google Scholar

[2] Blažej, M., Kiša, M., & Markoš, J. (2004). Scale influence on the hydrodynamics of an internal loop airlift reactor. Chemical Engineering and Processing: Process Intensification, 43, 1519–1527. DOI: 10.1016/j.cep.2004.02.003. http://dx.doi.org/10.1016/j.cep.2004.02.00310.1016/j.cep.2004.02.003Search in Google Scholar

[3] Bocquet, S., Gascons Viladomat, F., Muvdi Nova, C., Sanchez, J., Athes, V., & Souchon, I. (2006). Membrane-based solvent extraction of aroma compounds: Choice of configurations of hollow fiber modules based on experiments and simulation. Journal of Membrane Science, 281, 358–368. DOI: 10.1016/j.memsci.2006.04.005. http://dx.doi.org/10.1016/j.memsci.2006.04.00510.1016/j.memsci.2006.04.005Search in Google Scholar

[4] Council of the European Communities (1988). Council Directive of 22 June 1988 on the approximation of the laws of the Member States relating to flavourings for use in foodstuffs and to source materials for their production (88/388/EEC). Brussels, Belgium. Search in Google Scholar

[5] Etschmann, M. M. W., Sell, D., & Schrader, J. (2003). Screening of yeasts for the production of the aroma compound 2-phenylethanol in a molasses-based medium. Biotechnology Letters, 25, 531–536. DOI: 10.1023/a:1022890119847. http://dx.doi.org/10.1023/A:102289011984710.1023/A:1022890119847Search in Google Scholar

[6] Gabelman, A., & Hwang, S. T. (1999). Hollow fiber membrane contactors. Journal of Membrane Science, 159, 61–106. DOI: 10.1016/s0376-7388(99)00040-x. http://dx.doi.org/10.1016/S0376-7388(99)00040-X10.1016/S0376-7388(99)00040-XSearch in Google Scholar

[7] Gao, F., & Daugulis, A. J. (2009). Bioproduction of the aroma compound 2-phenylethanol in a solid-liquid two-phase partitioning bioreactor system by Kluyveromyces marxianus. Biotechnology and Bioengineering, 104, 332–339. DOI: 10.1002/bit.22387. http://dx.doi.org/10.1002/bit.2238710.1002/bit.22387Search in Google Scholar

[8] Gawroński, R., & Wrzesińska, B. (2000). Kinetics of solvent extraction in hollow-fiber contactors. Journal of Membrane Science, 168, 213–222. DOI: 10.1016/s0376-7388(99)00317-8. http://dx.doi.org/10.1016/S0376-7388(99)00317-810.1016/S0376-7388(99)00317-8Search in Google Scholar

[9] González-Muñoz, M. J., Luque, S., Álvarez, J. R., & Coca, J. (2003). Recovery of phenol from aqueous solutions using hollow fibre contactors. Journal of Membrane Science, 213, 181–193. DOI: 10.1016/s0376-7388 (02)00526-4. http://dx.doi.org/10.1016/S0376-7388(02)00526-410.1016/S0376-7388(02)00526-4Search in Google Scholar

[10] Guan, A., Wang, H., Meng, C., Shi, X. A., & Guo, Y. H. (2009). Biosynthesis of 2-phenylethanol by Saccharomyces cerevisiae sp. strain with ISPR technology. Chinese Journal of Process Engineering, 9, 128–132. Search in Google Scholar

[11] Hua, D. L., & Xu, P. (2011). Recent advances in biotechnological production of 2-phenylethanol. Biotechnology Advances, 29, 654–660. DOI: 10.1016/j.biotechadv.2011.05.001. http://dx.doi.org/10.1016/j.biotechadv.2011.05.00110.1016/j.biotechadv.2011.05.001Search in Google Scholar PubMed

[12] Chisti, Y. (1989). Airlift bioreactors (pp. 345). London, UK: Elsevier. Search in Google Scholar

[13] Juraščík, M., Blažej, M., Annus, J., & Markoš, J. (2006). Experimental measurements of volumetric mass transfer coefficient by the dynamic pressure-step method in internal loop airlift reactors of different scale. Chemical Engineering Journal, 125, 81–87. DOI: 10.1016/j.cej.2006.08.013. http://dx.doi.org/10.1016/j.cej.2006.08.01310.1016/j.cej.2006.08.013Search in Google Scholar

[14] Kertész, R., Šimo, M., & Schlosser, Š. (2005). Membrane-based solvent extraction and stripping of phenylalanine in HF contactors. Journal of Membrane Science, 257, 37–47. DOI: 10.1016/j.memsci.2004.12.022. http://dx.doi.org/10.1016/j.memsci.2004.12.02210.1016/j.memsci.2004.12.022Search in Google Scholar

[15] Kubišová, L., Sabolová, E., Schlosser, Š., Marták, J., & Kertész, R. (2002). Membrane based solvent extraction and stripping of a heterocyclic carboxylic acid in hollow fiber contactors. Desalination, 148, 205–211. DOI: 10.1016/s00119164(02)00699-9. http://dx.doi.org/10.1016/S0011-9164(02)00699-9Search in Google Scholar

[16] Mei, J. F., Min, H., & Lu, Z. M. (2009). Enhanced biotransformation of L-phenylalanine to 2-phenylethanol using an in situ product adsorption technique. Process Biochemistry, 44, 886–890. DOI: 10.1016/j.procbio.2009.04.012. http://dx.doi.org/10.1016/j.procbio.2009.04.01210.1016/j.procbio.2009.04.012Search in Google Scholar

[17] Mihaľ, M., Markoš, J., & Štefuca, V. (2011). Membrane extraction of 1-phenylethanol from fermentation solution. Chemical Papers, 65, 156–166. DOI: 10.2478/s11696-010-0096-5. http://dx.doi.org/10.2478/s11696-010-0096-510.2478/s11696-010-0096-5Search in Google Scholar

[18] Mihaľ, M., Markoš, J., Annus, J., & Štefuca, V. (2012a). Intensification of 1-phenylethanol production by periodical membrane extraction of the product from fermentation broth. Journal of Chemical Technology and Biotechnology, 87, 1017–1026. DOI: 10.1002/jctb.3725. http://dx.doi.org/10.1002/jctb.372510.1002/jctb.3725Search in Google Scholar

[19] Mihaľ, M., Vereš, R., & Markoš, J. (2012b). Investigation of 2-phenylethanol production in fed-batch hybrid bioreactor: Membrane extraction and microfiltration. Separation and Purification Technology, 95, 126–135. DOI:10.1016/j.seppur.2012.04.030. http://dx.doi.org/10.1016/j.seppur.2012.04.03010.1016/j.seppur.2012.04.030Search in Google Scholar

[20] Sciubba, L., Di Gioia, D., Fava, F., & Gostoli, C. (2009). Membrane-based solvent extraction of vanillin in hollow fiber contactors. Desalination, 241, 357–364. DOI: 10.1016/j.desal.2007.10.104. http://dx.doi.org/10.1016/j.desal.2007.10.10410.1016/j.desal.2007.10.104Search in Google Scholar

[21] Sikula, I., Juraščík, M., & Markoš, J. (2007). Modeling of fermentation in an internal loop airlift bioreactor. Chemical Engineering Science, 62, 5216–5221. DOI: 10.1016/j.ces.2007.01.050. http://dx.doi.org/10.1016/j.ces.2007.01.05010.1016/j.ces.2007.01.050Search in Google Scholar

[22] Stark, D., Münch, T., Sonnleitner, B., Marison, I. W., & von Stockar, U. (2002). Extractive bioconversion of 2-phenylethanol from L-phenylalanine by Saccharomyces cerevisiae. Biotechnology Progress, 18, 514–523. DOI: 10.1021/bp020006n. http://dx.doi.org/10.1021/bp020006n10.1021/bp020006nSearch in Google Scholar

[23] Stark, D., Zala, D., Münch, T., Sonnleitner, B., Marison, I. W., & von Stockar, U. (2003). Inhibition aspects of the bioconversion of L-phenylalanine to 2-phenylethanol by Saccharomyces cerevisiae. Enzyme and Microbial Technology, 32, 212–223. DOI: 10.1016/s0141-0229 (02)00237-5. http://dx.doi.org/10.1016/S0141-0229(02)00237-510.1016/S0141-0229(02)00237-5Search in Google Scholar

[24] US Department of Agriculture (1985). Definition of natural flavors (FDA 21 CFR part 101.22(a)(3)). Washington, DC, USA. Search in Google Scholar

[25] Vial, C., Poncin, S., Wild, G., & Midoux, N. (2005). Experimental and theoretical analysis of axial dispersion in the liquid phase in external-loop airlift reactors. Chemical Engineering Science, 60, 5945–5954. DOI: 10.1016/j.ces.2005.04.028. http://dx.doi.org/10.1016/j.ces.2005.04.02810.1016/j.ces.2005.04.028Search in Google Scholar

[26] Viegas, R. M. C., Rodríguez, M., Luque, S., Alvarez, J. R., Coelhoso, I. M., & Crespo, J. P. S. G. (1998). Mass transfer correlations in membrane extraction: Analysis of Wilson-plot methodology. Journal of Membrane Science, 145, 129–142. DOI: 10.1016/s0376-7388(98)00074-x. http://dx.doi.org/10.1016/S0376-7388(98)00074-X10.1016/S0376-7388(98)00074-XSearch in Google Scholar

[27] Wang, C. T., Sun, B. G., Cao, Y. P., Wang, J., & Zhang, H. (2008). Biosynthesis of natural 2-phenylethanol by yeast cells. Modern Chemical Industry, 28(8), 38–43. Search in Google Scholar

Published Online: 2013-8-21
Published in Print: 2013-12-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0261-0/html
Scroll to top button