Home Design calculations of an extractor for aromatic and aliphatic hydrocarbons separation using ionic liquids
Article
Licensed
Unlicensed Requires Authentication

Design calculations of an extractor for aromatic and aliphatic hydrocarbons separation using ionic liquids

  • Elena Graczová EMAIL logo , Pavol Steltenpohl , Martin Šoltýs and Tomáš Katriňák
Published/Copyright: August 21, 2013
Become an author with De Gruyter Brill

Abstract

The study concentrates on the separation of aromatic hydrocarbons from aliphatic hydrocarbon mixtures using ionic liquids as a new alternative of extraction solvents. Influence of the phase equilibrium description accuracy on the separation equipment design using different thermodynamic models was investigated. As a model system, a heptane-toluene binary mixture was chosen, employing 1-ethyl-3-methylimidazolium ethyl sulfate (EMIES) ionic liquid as an extractive solvent. Liquid-liquid equilibrium (LLE) data of the ternary system were calculated using NRTL equations with different quality model parameters. Model 1 corresponds to the NRTL equation with the original binary parameters evaluated independently from the respective binary equilibrium data. Model 2 is represented by an NRTL equation extended by the ternary correction term (with the original binary parameters and ternary correction term parameters evaluated from the ternary tie-lines). Model 3, i.e. the NRTL equation with binary model parameters determined via ternary LLE data regression using ASPEN Plus, was taken from Meindersma et al. (2006). Continuous-flow liquidphase extraction was simulated considering a cascade of mixer-settler type extractors according to the Hunter-Nash scheme (Hunter & Nash, 1934). Based on the simulation results, for a preset separation efficiency criterium, different accuracies of the equilibrium description caused serious discrepancies in the separation equipment design, e.g. in the number of theoretical stages, solvent to feed ratio, and product purity.

[1] Ali, S. H., Lababidi, H. M. S., Merchant, S. Q., & Fahim, M. A. (2003). Extraction of aromatics from naphtha reformate using propylene carbonate. Fluid Phase Equilibria, 214, 25–38. DOI: 10.1016/s0378-3812(03)00323-6. http://dx.doi.org/10.1016/S0378-3812(03)00323-610.1016/S0378-3812(03)00323-6Search in Google Scholar

[2] Arce, A., Earle, M. J., Katdare, S. P., Rodriguez, H., & Seddon, K. R. (2007). Phase equilibria of mixtures of mutually immiscible ionic liquids. Fluid Phase Equilibria, 261, 427–433. DOI: 10.1016/j.fluid.2007.06.017. http://dx.doi.org/10.1016/j.fluid.2007.06.01710.1016/j.fluid.2007.06.017Search in Google Scholar

[3] Aznar, M. (2007). Correlation of (liquid + liquid) equilibrium of systems including ionic liquids. Brazilian Journal of Chemical Engineering, 24, 143–149. DOI: 10.1590/s0104-66322007000100013. http://dx.doi.org/10.1590/S0104-6632200700010001310.1590/S0104-66322007000100013Search in Google Scholar

[4] Bendova, M., & Wagner, Z. (2009). Thermodynamic description of liquid-liquid equilibria in systems 1-ethyl-3-methylimidazolium ethylsulfate + C7-hydrocarbons by polymer-solution models. Fluid Phase Equilibria, 284, 80–85. DOI: 10.1016/j.fluid.2009.06.014. http://dx.doi.org/10.1016/j.fluid.2009.06.01410.1016/j.fluid.2009.06.014Search in Google Scholar

[5] Blažek, J., & Rabl, V. (2006). Základy zpracování a využití ropy (2nd ed.). Prague, Czech Republic: VŠCHT. Search in Google Scholar

[6] Chan, C., & Song, Y. H. (2004). Generalized electrolyte-NRTL model for mixed-solvent electrolyte systems. AIChE Journal, 50, 1928–1941. DOI: 10.1002/aic.10151. http://dx.doi.org/10.1002/aic.1015110.1002/aic.10151Search in Google Scholar

[7] Chen, C. C., Britt, H. I., Boston, J. F., & Evans, L. B. (1982). Local composition model for excess Gibbs energy of electrolyte systems. Part I: Single solvent, single completely dissociated electrolyte system. AIChE Journal, 28, 588–596. DOI: 10.1002/aic.690280410. http://dx.doi.org/10.1002/aic.69028041010.1002/aic.690280410Search in Google Scholar

[8] Choi, Y. J., Cho, K. W., Cho, B. W., & Yeo, Y. K. (2002). Optimization of the sulfolane extraction plant based on modeling and simulation. Industrial & Engineering Chemistry Research, 41, 5504–5509. DOI: 10.1021/ie010435a. http://dx.doi.org/10.1021/ie010435a10.1021/ie010435aSearch in Google Scholar

[9] Domańska, U., Laskowska, M., & Marciniak, A. (2008). Phase equilibria of (1-ethyl-3-methylimidazolium ethylsulfate + hydrocarbon, + ketone, and + ether) binary systems. Journal of Chemical & Engineering Data, 53, 498–502. DOI: 10.1021/je700591h. http://dx.doi.org/10.1021/je700591h10.1021/je700591hSearch in Google Scholar

[10] Garcia, J., Torrecilla, J. S., Fernandez, A., Oliet, M., & Rodriguez, F. (2010). (Liquid + liquid) equilibria in the binary systems (aliphatic, or aromatic hydrocarbons + 1-ethyl-3-methylimidazolium ethylsulfate, or 1-butyl-3-methylimidazolium methylsulfate ionic liquids). The Journal of Chemical Thermodynamics, 42, 144–150. DOI: 10.1016/j.jct.2009.07.023. http://dx.doi.org/10.1016/j.jct.2009.07.02310.1016/j.jct.2009.07.023Search in Google Scholar

[11] Gmehling, J., & Krummen, M. (2003). German Patent DE101 54052 DE. Munich, Germany: German Patent and Trade Mark Office. Search in Google Scholar

[12] Gonzalez, E. J., Calvar, N., Gomez, E., & Dominguez, A. (2010). Separation of benzene from linear alkanes (C6-C9) using 1-ethyl-3-methylimidazolium ethylsulfate at T = 298.15 K. Journal of Chemical & Engineering Data, 55, 3422–3427. DOI: 10.1021/je1001544. http://dx.doi.org/10.1021/je100154410.1021/je1001544Search in Google Scholar

[13] Hansmeier, A. R., Jongsmans, M., Meindersma, G. W., & de Haan, A. B. (2010). LLE data for the ionic liquid 3-methyl-N-butyl pyridinium dicyanamide with several aromatic and aliphatic hydrocarbons. The Journal of Chemical Thermodynamics, 42, 484–490. DOI: 10.1016/j.jct.2009.11.001. http://dx.doi.org/10.1016/j.jct.2009.11.00110.1016/j.jct.2009.11.001Search in Google Scholar

[14] Hanusek, J. (2005). Iontove kapaliny — nový směr v “zelene” chemii. Chemické Listy, 99, 263–294. Search in Google Scholar

[15] Hendricks, E., Kontogeorgis, G. M., Dohrn, R., de Hemptinne, J. C., Economou, I. G., Fele Žilnik, L., & Vesovic, V. (2010). Industrial requirements for thermodynamics and transport properties. Industrial & Engineering Chemistry Research, 49, 11131–11141. DOI: 10.1021/ie101231b. http://dx.doi.org/10.1021/ie101231b10.1021/ie101231bSearch in Google Scholar

[16] Huddleston, J. G., & Rogers, R. D. (1998). Room temperature ionic liquids as novel media for’ clean’ liquid-liquid extraction. Chemical Communications, 1998, 1765–1766. DOI: 10.1039/a803999b. http://dx.doi.org/10.1039/a803999b10.1039/A803999BSearch in Google Scholar

[17] Hunter, T. G., & Nash, A. W. (1934). The application of physico-chemical principles to the design of liquid-liquid contact equipment. Part II: Application of phase-rule graphical method. Journal of the Society of Chemical Industry, 53, 95T–102T. DOI: 10.1002/jctb.5000531407. http://dx.doi.org/10.1002/jctb.500053140710.1002/jctb.5000531407Search in Google Scholar

[18] Krishna, R., Goswami, A. N., Nanoti, S. M., Rawat, B. S., Khanna, M. K., & Dobhal, J. (1987). Extraction of aromatics from 63–69°C naphtha fraction for food grade hexane production using sulfolane and NMP as solvents. Indian Journal of Chemical Technology, 25, 602–606. Search in Google Scholar

[19] Krummen, M., Wasserchied, P., & Gmehling, J. (2002). Measurement of activity coeffitients at infinite dilution in ionic liquids using the dilutor technique. Journal of Chemical & Engineering Data, 47, 1411–1417. DOI: 10.1021/je0200517. http://dx.doi.org/10.1021/je020051710.1021/je0200517Search in Google Scholar

[20] Meindersma, G. W. (2005). From solvent development to pilot RDC evaluation: Extraction of aromatics from naphtha with ionic liquids. PhD. thesis, University of Twente, Enschede, The Netherlands. Search in Google Scholar

[21] Meindersma, G. W., Podt, A. J. G., & de Haan, A. B. (2006). Ternary liquid-liquid equilibria for mixtures of toluene + nheptane + an ionic liquid. Fluid Phase Equilibria, 247, 158–168. DOI: 10.1016/j.fluid.2006.07.002. http://dx.doi.org/10.1016/j.fluid.2006.07.00210.1016/j.fluid.2006.07.002Search in Google Scholar

[22] Meindersma, G. W., & de Haan, A. B. (2008). Conceptual process design for aromatic/aliphatic separation with ionic liquids. Chemical Engineering Research and Design, 86, 745–752. DOI: 10.1016/j.cherd.2008.02.016. http://dx.doi.org/10.1016/j.cherd.2008.02.01610.1016/j.cherd.2008.02.016Search in Google Scholar

[23] Pereiro, A. B., Deive, F. J., Esperança, J. M. S. S., & Rodriguez, A. (2010). Alkylsulfate-based ionic liquids to separate azeotropic mixtures. Fluid Phase Equilibria, 294, 49–53. DOI: 10.1016/j.fluid.2010.05.006. http://dx.doi.org/10.1016/j.fluid.2010.05.00610.1016/j.fluid.2010.05.006Search in Google Scholar

[24] Perreiro, A. B., Araujo, J. M. M., Esperança, J. M. M. S., Marrucho, I. M., & Rebelo, L. P. N. (2012). Ionic liquids in separations of azeotropic systems — A review. The Journal of Chemical Thermodynamics, 46, 2–28. DOI: 10.1016/j.jct.2011.05.026. http://dx.doi.org/10.1016/j.jct.2011.05.02610.1016/j.jct.2011.05.026Search in Google Scholar

[25] Renon, H., & Prausnitz, J. M. (1968). Local compositions in thermodynamic excess functions for liquid mixtures. AIChE Journal, 14, 135–144. DOI: 10.1002/aic.690140124. http://dx.doi.org/10.1002/aic.69014012410.1002/aic.690140124Search in Google Scholar

[26] Schnieder, D. F. (2004). Avoid sulfolane regeneration problems. Chemical Engineering Progress, 100(7), 34–39. Search in Google Scholar

[27] Seiler, M., Jork, C., Kavarnou, A., Arlt, W., & Hirsch, R. (2004). Separation of azeotropic mixtures using hyperbranched polymers or iononic liquids. AIChE Journal, 50, 2439–2454. DOI: 10.1002/aic.10249. http://dx.doi.org/10.1002/aic.1024910.1002/aic.10249Search in Google Scholar

[28] Simoni, L. D., Lin, Y. D., Brennecke, J. F., & Stadtherr, M. A. (2008). Modeling liquid-liquid equilibrium of ionic liquid systems with NRTL, electrolyte-NRTL, and UNIQUAC. Industrial & Engineering Chemistry Research, 47, 256–272. DOI: 10.1021/ie070956j. http://dx.doi.org/10.1021/ie070956j10.1021/ie070956jSearch in Google Scholar

[29] Sorensen, J. M., & Arlt, W. (1980a). Liquid-liquid equilibrium data collection. (DECHEMA Chemistry data series, Vol. V, Part 2. Ternary systems). Frankfurt/Main, Germany: DECHEMA. Search in Google Scholar

[30] Sorensen, J. M., & Arlt, W. (1980b). Liquid-liquid equilibrium data collection. (DECHEMA Chemistry data series, Vol. V, Part 3. Ternary and quaternary systems). Frankfurt/Main, Germany: DECHEMA. Search in Google Scholar

[31] Steltenpohl, P., & Graczova, E. (2010). Application of extended NRTL equation for ternary liquid-liquid and vapor-liquid-liquid equilibria description. Chemical Papers, 64, 310–317. DOI: 10.2478/s11696-010-0006-x. http://dx.doi.org/10.2478/s11696-010-0006-x10.2478/s11696-010-0006-xSearch in Google Scholar

[32] Sumartschenkowa, I. A., Verevkin, S. P., Vasiltsova, T. V., Bich, E., Heintz, A., Shevelyova, M. P., & Kabo, G. J. (2006). Experimental study of thermodynamic properties of mixtures containing ionic liquid 1-ethyl-3-methylimidazolium ethyl sulfate using gas-liquid chromatography and transpiration method. Journal of Chemical & Engineering Data, 51, 2138–2144. DOI: 10.1021/je0602723. http://dx.doi.org/10.1021/je060272310.1021/je0602723Search in Google Scholar

[33] Surovy, J., Dojčansky, J., & Bafrncova, S. (1982). The calculation of ternary liquid-liquid (L-L) equilibrium data using a ternary correction to the excess Gibbs free energy. Collection of Czechoslovak Chemical Communications, 47, 2380–2392. DOI: 10.1135/cccc19822380. http://dx.doi.org/10.1135/cccc1982238010.1135/cccc19822380Search in Google Scholar

[34] Varma, N. R., Ramalingam, A., & Banerjee, T. (2011). Experiments, correlations and COSMO-RS predictions for the extraction of benzothiophene from n-hexane using imidazolium-based ionic liquids. Chemical Engineering Journal, 166, 30–39. DOI: 10.1016/j.cej.2010.09.015. http://dx.doi.org/10.1016/j.cej.2010.09.01510.1016/j.cej.2010.09.015Search in Google Scholar

[35] Wauquier, J. P. (2000). Petroleum refining 2: Separation processes. Paris, France: Èditions Technip. Search in Google Scholar

[36] Weissermel, K., & Arpe, H. J. (2003). Industrial organic chemistry (4th ed., pp. 313–336). Weinheim, Germany: Wiley-VCH. http://dx.doi.org/10.1002/978352761919110.1002/9783527619191Search in Google Scholar

[37] Yorulmaz, Y., & Karpuczu, F. (1985). Sulfolane versus diethylene glycol in recovery of aromatics. Chemical Engineering Research and Design, 63, 184–190. Search in Google Scholar

Published Online: 2013-8-21
Published in Print: 2013-12-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0289-1/html
Scroll to top button