Home Degradation and toxicity changes in aqueous solutions of chloroacetic acids by Fenton-like treatment using zero-valent iron
Article
Licensed
Unlicensed Requires Authentication

Degradation and toxicity changes in aqueous solutions of chloroacetic acids by Fenton-like treatment using zero-valent iron

  • Tomáš Mackuľak EMAIL logo , Josef Prousek , Miroslava Smolinská , Petra Olejníková , Alžbeta Takáčová and Miloslav Drtil
Published/Copyright: August 21, 2013
Become an author with De Gruyter Brill

Abstract

Three priority pollutants, i.e. mono-, di-, and trichloroacetic acids, were degraded by the conventional Fenton AOP system (Fe2+ and H2O2). The results obtained suggest that the degradation decreased in the order: monochloroacetic, dichloroacetic, and trichloroacetic acid. The best of advanced oxidation processes (AOPs) for the degradation of trichloroacetic acid was reductive dechlorination with the use of zero-valent iron (Fe°). The results of Escherichia coli toxicity tests revealed that the reagents’ toxicity after the Fenton treatment process was decreased.

[1] Anang, D. M., Rusul, G., Radu, S., Bakar, J., & Beuchat, L. R. (2006). Inhibitory effect of oxalic acid on bacterial spoilage of raw chilled chicken. Journal of Food Protection, 69, 1913–1919. 10.4315/0362-028X-69.8.1913Search in Google Scholar

[2] Ballschmiter, K. (1992). Transport and fate of organic compounds in the global environment. Angewandte Chemie International Edition, 31, 487–515. DOI: 10.1002/anie.199204873. http://dx.doi.org/10.1002/anie.19920487310.1002/anie.199204873Search in Google Scholar

[3] Devi, L. G., Kumar, S. G., Reddy, K. M., & Munikrishnappa, C. (2009). Photodegradation of Methyl Orange an azo dye by Advanced Fenton Process using zero valent metallic iron: Influence of various reaction parameters and its degradation mechanism. Journal of Hazardous Materials, 164, 459–467. DOI: 10.1016/j.jhazmat.2008.08.017. http://dx.doi.org/10.1016/j.jhazmat.2008.08.01710.1016/j.jhazmat.2008.08.017Search in Google Scholar

[4] Flodin, C., Johansson, E., Borén, H., Grimvall, A., Dahlman, O., & Mörck, R. (1997). Chlorinated structures in high molecular weight organic matter isolated from fresh and decaying plant material and soil. Environmental Science & Technology, 31, 2464–2468. DOI: 10.1021/es960374l. http://dx.doi.org/10.1021/es960374l10.1021/es960374lSearch in Google Scholar

[5] Frank, H., Vincon, A., Reiss, J., & Scholl, H. (1990). Trichloroacetic acid in the foliage of forest trees. Journal of High Resolution Chromatography, 13, 733–736. DOI: 10.1002/jhrc.1240131102. http://dx.doi.org/10.1002/jhrc.124013110210.1002/jhrc.1240131102Search in Google Scholar

[6] Franke, C., Studinger, G., Berger, G., Böhling, S., Bruckmann, U., Cohors-Fresenborg, D., & Jöhncke, U. (1994). The assessment of bioaccumulation. Chemosphere, 29, 1501–1514. DOI: 10.1016/0045-6535(94)90281-x. http://dx.doi.org/10.1016/0045-6535(94)90281-X10.1016/0045-6535(94)90281-XSearch in Google Scholar

[7] Fulthorpe, R. R., & Allen, D. G. (1995). A comparison of organochlorine removal from bleached kraft pulp and papermill effluents by dehalogenating Pseudomonas, Ancylobacter and Methylobacterium strains. Applied Microbiology and Biotechnology, 42, 782–789. DOI: 10.1007/bf00171962. http://dx.doi.org/10.1007/BF0017196210.1007/BF00171962Search in Google Scholar

[8] Gribble, G. W. (1994). The natural production of chlorinated compounds. Environmental Science & Technology, 28, 310A–319A. DOI: 10.1021/es00056a712. 10.1021/es00056a712Search in Google Scholar

[9] Gu, X. G., Lu, S. G., Qiu, Z. F., Sui, Q., Banks, J. C., Imai, T., Lin, K. F., & Luo, Q. S. (2013). Photodegradation performance of 1,1,1-trichloroethane in aqueous solution: In the presence and absence of persulfate. Chemical Engineering Journal, 215-216, 29–35. DOI: 10.1016/j.cej.2012.09.132. http://dx.doi.org/10.1016/j.cej.2012.09.13210.1016/j.cej.2012.09.132Search in Google Scholar

[10] Gürtel, R., Möller, U., Sommer, S., Müller, H., & Kleinermanns, K. (1994). Photooxidation of exhaust pollutants: III. Photooxidation of chloroethenes: Degradation efficiencies, quantum yields and products. Chemosphere, 29, 1671–1682. DOI: 10.1016/0045-6535(94)90314-x. http://dx.doi.org/10.1016/0045-6535(94)90314-X10.1016/0045-6535(94)90314-XSearch in Google Scholar

[11] Haiber, G., Jacob, G., Niedan, V., Nkusi, G., & Schöler, H. F. (1996). The occurrence of trichloroacetic acid (TCAA)-indications of a natural production? Chemosphere, 33, 839–849. DOI: 10.1016/0045-6535 (96)00239-1. http://dx.doi.org/10.1016/0045-6535(96)00239-110.1016/0045-6535(96)00239-1Search in Google Scholar

[12] Hart, F. J. (2000). U.S. Patent No. 6,133,318. Washington, D.C.: U.S. Patent and Trademark Office. Search in Google Scholar

[13] Horáková, M. (2003). Analytika vody. Prague, Czech Republic: VŠCHT. (in Czech) Search in Google Scholar

[14] Horáková, M., Lischke, P., & Grunwald, A. (1986). Chemické a fyzikální metody analyzy vod. Prague, Czech Republic: SNTL. (in Czech) Search in Google Scholar

[15] Itoh, N., Kutsuna, S., & Ibusuki, T. (1994). A product study of the OH radical initiated oxidation of perchloroethylene and trichloroethylene. Chemosphere, 28, 2029–2040. DOI: 10.1016/0045-6535(94)90153-8. http://dx.doi.org/10.1016/0045-6535(94)90153-810.1016/0045-6535(94)90153-8Search in Google Scholar

[16] Jensen, H. L. (1957). Decomposition of chloro-substituted aliphatic acids by soil bacteria. Canadian Journal of Microbiology, 3, 151–164. DOI: 10.1139/m57-019. http://dx.doi.org/10.1139/m57-01910.1139/m57-019Search in Google Scholar

[17] Kassinos, D., Varnava, N., Michael, C., & Piera, P. (2009). Homogeneous oxidation of aqueous solutions of atrazine and fenitrothion through dark and photo-Fenton reactions. Chemosphere, 74, 866–872. DOI: 10.1016/j.chemosphere.2008.10.008. http://dx.doi.org/10.1016/j.chemosphere.2008.10.00810.1016/j.chemosphere.2008.10.008Search in Google Scholar

[18] Keppler, F., Eiden, R., Niedan, V., Pracht, J., & Schöler, H. F. (2000). Halocarbons produced by natural oxidation processes during degradation of organic matter. Nature, 403, 298–301. DOI: 10.1038/35002055. http://dx.doi.org/10.1038/3500205510.1038/35002055Search in Google Scholar

[19] Mackuľak, T., Olejníková, P., Prousek, J., & Švorc, Ľ. (2011). Toxicity reduction of 2-(5-nitrofuryl)acrylic acid following Fenton reaction treatment. Chemical Papers, 65, 835–839. DOI: 10.2478/s11696-011-0075-5. http://dx.doi.org/10.2478/s11696-011-0075-510.2478/s11696-011-0075-5Search in Google Scholar

[20] Martin, H. (1972). Pesticide manual: Basic information on the chemicals used as active components of pesticides (3rd ed.). Alton, UK: British Crop Protection Council. Search in Google Scholar

[21] Marugán, J., Aguado, J., Gernjak, W., & Malato, S. (2007). Solar photocatalytic degradation of dichloroacetic acid with silica-supported titania at pilot-plant scale. Catalysis Today, 129, 59–68. DOI: 10.1016/j.cattod.2007.06.054. http://dx.doi.org/10.1016/j.cattod.2007.06.05410.1016/j.cattod.2007.06.054Search in Google Scholar

[22] McCulloch, A. (2002). Trichloroacetic acid in the environment. Chemosphere, 47, 667–686. DOI: 10.1016/s0045-6535(01)00 343-5. http://dx.doi.org/10.1016/S0045-6535(01)00343-510.1016/S0045-6535(01)00343-5Search in Google Scholar

[23] Morris, E. D., & Bost, J. C. (1991). Acetic acid: halogenated derivatives. In J. I. Kroschwitz (Ed.), Kirk-Othmer encyclopaedia of chemical technology (4th ed., Vol. 1, pp. 169–171). New York, NY, USA: Wiley. Search in Google Scholar

[24] Mroueh, U. M. (1994). Emissions of hazardous air pollutants (Research Notes, 1414). Espoo, Finland: Technical Research Center of Finland. Search in Google Scholar

[25] Müller, G. (1996). The role and the pathway of trichloroacetic acid (TCA) as an ubiquitous naturally available organohalogen. Brussels, Belgium: Euro Chlor. Search in Google Scholar

[26] Nelson, L., Shanahan, I., Sidebottom, H. W., Treacy, J., & Nielsen, O. J. (1990). Kinetics and mechanisms for the oxidation of 1,1,1-trichloroethane. International Journal of Chemical Kinetics, 22, 577–590. DOI: 10.1002/kin.550220603. http://dx.doi.org/10.1002/kin.55022060310.1002/kin.550220603Search in Google Scholar

[27] Prousek, J., & Priesolová, S. (2002). Practical utilization of zero-valent iron in Fenton reaction for treatment of coloured waste waters. Chemické Listy, 96, 893–896. (in Czech) Search in Google Scholar

[28] Tang, S., Wang, X. M., Yang, H. W., & Xie, Y. F. (2013). Haloacetic acid removal by sequential zero-valent iron reduction and biologically active carbon degradation. Chemosphere, 90, 1563–1567. DOI: 10.1016/j.chemosphere.2012.09.046. http://dx.doi.org/10.1016/j.chemosphere.2012.09.04610.1016/j.chemosphere.2012.09.046Search in Google Scholar PubMed

Published Online: 2013-8-21
Published in Print: 2013-12-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0358-0/html
Scroll to top button