Abstract
In the present work, kinetics of tartrazine decay by UV irradiation and H2O2 photolysis, and the removal of total organic carbon (TOC) under specific experimental conditions was explored. Irradiation experiments were carried out using a photoreactor of original design with a low-pressure Hg vapour lamp. The photodegradation rate of tartrazine was optimised with respect to the H2O2 concentration and temperature for the constant dye concentration of 1.035 × 10−5 M. Tartrazine degradation and the removal of TOC followed the pseudo-first-order kinetics. The much higher k obs value for tartrazine degradation (7.91 × 10−4 s−1) as compared with the TOC removal (2.3 × 10−4 s−1) confirmed the presence of reaction intermediates in the solution.
[1] Alvarez Cuesta, E., Alcover Sánchez, R., Sainz Martín, T., Anaya Turrientes, M., & García Rodríguez, D. (1981). Pharmaceutical preparations which contain tartrazine. Allergologia et Immunopathologia (Madrid), 9, 45–54. (in Spanish) Search in Google Scholar
[2] Aleboyeh, A., Aleboyeh, H., & Moussa, Y. (2003). “Critical” effect of hydrogen peroxide in photochemical oxidative decolorization of dyes: Acid Orange 8, Acid Blue 74 and Methyl Orange. Dyes and Pigments, 57, 67–75. DOI: 10.1016/s0143-7208(03)00010-x. http://dx.doi.org/10.1016/S0143-7208(03)00010-X10.1016/S0143-7208(03)00010-XSearch in Google Scholar
[3] Behnajady, M. A., Modirshahla, N., & Shokri, M. (2004). Photodestruction of Acid Orange 7 (AO7) in aqueous solutions by UV/H2O2: influence of operational parameters. Chemosphere, 55, 129–134. DOI: 10.1016/j.chemosphere.2003.10.054. http://dx.doi.org/10.1016/j.chemosphere.2003.10.05410.1016/j.chemosphere.2003.10.054Search in Google Scholar
[4] Bielski, B. H. J., Cabelli, D. E., Arudi, R. L., & Ross, A. B. (1985). Reactivity of HO2/O 2− radicals in aqueous solution. Journal of Physical and Chemical Reference Data, 14, 1041–1100. DOI: 10.1063/1.555739. http://dx.doi.org/10.1063/1.55573910.1063/1.555739Search in Google Scholar
[5] Buxton, G. V., Greenstock, C. L., Helman, W. P., & Ross, A. B. (1988). Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O−) in aqueous solution. Journal of Physical and Chemical Reference Data, 17, 513–886. DOI: 10.1063/1.555805. http://dx.doi.org/10.1063/1.55580510.1063/1.555805Search in Google Scholar
[6] Daneshvar, N., Salari, D., & Aber, S. (2002). Chromium adsorption and Cr(VI) reduction to trivalent chromium in aqueous solutions by soya cake. Journal of Hazardous Materials, B94, 49–61. DOI: 10.1016/s0304-3894(02)00054-7. http://dx.doi.org/10.1016/S0304-3894(02)00054-710.1016/S0304-3894(02)00054-7Search in Google Scholar
[7] Daneshvar, N., Ashassi-Sorkhabi, H., & Tizpar, A. (2003). Decolorization of orange II by electrocoagulation method. Separation and Purification Technology, 31, 153–162. DOI: 10.1016/s1383-5866(02)00178-8. http://dx.doi.org/10.1016/S1383-5866(02)00178-810.1016/S1383-5866(02)00178-8Search in Google Scholar
[8] Daneshvar, N., Rabbani, M., Modirshahla, N., & Behnajady, M. A. (2004). Critical effect of hydrogen peroxide concentration in photochemical oxidative degradation of C.I. Acid Red 27(AR27). Chemosphere, 56, 895–900. DOI: 10.1016/j.chemosphere.2004.06.001. http://dx.doi.org/10.1016/j.chemosphere.2004.06.00110.1016/j.chemosphere.2004.06.001Search in Google Scholar
[9] Da Silva, C. R., Maniero, M. G., Rath, S., & Guimãraes, J. R. (2011). Antibacterial activity inhibition after the degradation of flumequine by UV/H2O2. Journal of Advanced Oxidation and Technology, 14, 106–114. 10.1515/jaots-2011-0113Search in Google Scholar
[10] El-Dein, A. M., Libra, J. A., & Wiesmann, U. (2003). Mechanism and kinetic model for the decolorization of the azo dye Reactive Black 5 by hydrogen peroxide and UV radiation. Chemosphere, 52, 1069–1077. DOI: 10.1016/s0045-6535(03)00226-1. http://dx.doi.org/10.1016/S0045-6535(03)00226-110.1016/S0045-6535(03)00226-1Search in Google Scholar
[11] Elmorsi, T. M., Riyad, Y. M., Mohamed, Z. H., & Abd El Bary, H. M. H. (2010). Decolorization of Mordant red 73 azo dye in water using H2O2/UV and photo-Fenton treatment. Journal of Hazardous Materials, 174, 352–358. DOI: 10.1016/j.jhazmat.2009.09.057. http://dx.doi.org/10.1016/j.jhazmat.2009.09.05710.1016/j.jhazmat.2009.09.057Search in Google Scholar PubMed
[12] El Qada, E., Allen, S., & Walker, G. M. (2008). Adsorption of basic dyes from aqueous solution onto activated carbons. Chemical Engineering Journal, 135, 174–184. DOI: 10.1016/j.cej.2007.02.023. http://dx.doi.org/10.1016/j.cej.2007.02.02310.1016/j.cej.2007.02.023Search in Google Scholar
[13] Fragoso, C. T., Battisti, R., Miranda, C., & de Jesus, P. C. (2009). Kinetic of the degradation of C.I. Food Yellow 3 and C.I. Food Yellow 4 azo dyes by the oxidation with hydrogen peroxide. Journal of Molecular Catalysis A: Chemical, 301, 93–97. DOI: 10.1016/j.molcata.2008.11.014. http://dx.doi.org/10.1016/j.molcata.2008.11.01410.1016/j.molcata.2008.11.014Search in Google Scholar
[14] Gao, J., Wang, X., Hu, Z., Deng, H., Hou, J., Lu, X., & Kang, J. (2003). Plasma degradation of dyes in water with contact glow discharge electerolysis. Water Research, 37, 267–272. DOI: 10.1016/s0043-1354(02)00273-7. http://dx.doi.org/10.1016/S0043-1354(02)00273-710.1016/S0043-1354(02)00273-7Search in Google Scholar
[15] Georgiou, D., Melidis, P., Aivasidis, A., & Gimouhopoulos, K. (2002). Degradation of azo-reactive dyes by ultraviolet radiation in the presence of hydrogen peroxide. Dyes and Pigments, 52, 69–78. DOI: 10.1016/s0143-7208(01)00078-x. http://dx.doi.org/10.1016/S0143-7208(01)00078-X10.1016/S0143-7208(01)00078-XSearch in Google Scholar
[16] Gupta, V. K., Jain, R., Nayak, A., Agarwal, S., & Shrivastava, M. (2011). Removal of the hazardous dye-Tartrazine by photodegradation on titanium dioxide surface. Materials Science and Engineering C, 31, 1062–1067. DOI: 10.1016/j.msec.2011.03.006. http://dx.doi.org/10.1016/j.msec.2011.03.00610.1016/j.msec.2011.03.006Search in Google Scholar
[17] Gupta, V. K., Pathania, D., Agarwal, S., & Singh, P. (2012a). Adsorptional photocatalytic degradation of methylene blue onto pectin-CuS nanocomposite under solar light. Journal of Hazardous Materials, 243, 179–186. DOI: 10.1016/j.jhazmat.2012.10.018. http://dx.doi.org/10.1016/j.jhazmat.2012.10.01810.1016/j.jhazmat.2012.10.018Search in Google Scholar PubMed
[18] Gupta, V. K., Jain, R., Mittal, A., Saleh, T. A., Nayak, A., Agarwal, S., & Sikarwar, S. (2012b). Photo-catalytic degradation of toxic dye amaranth on TiO2/UV in aqueous suspensions. Materials Science and Engineering C, 32, 12–17. DOI: 10.1016/j.msec.2011.08.018. http://dx.doi.org/10.1016/j.msec.2011.08.01810.1016/j.msec.2011.08.018Search in Google Scholar PubMed
[19] Hatchard, C. G., & Parker, C. A. (1956). A new sensitive actinometer. II. Potassium ferrioxalate as a standard chemical actinometer. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 235, 518–536. DOI: 10.1098/rspa.1956.0102. http://dx.doi.org/10.1098/rspa.1956.010210.1098/rspa.1956.0102Search in Google Scholar
[20] Ince, N. H., Stefan, M. I., & Bolton, J. R. (1997). UV/H2O2 degradation and toxicity reduction of textile azo dye: remazol Black-B, a case study. Journal of Advanced Oxididation Technologies, 2, 442–448. 10.1515/jaots-1997-0312Search in Google Scholar
[21] Khehra, M. S., Saini, H. S., Sharma, D. K., Chadha, B. S., & Chimni, S. S. (2006). Biodegradation of azo dye C.I. Acid Red 88 by an anoxic-aerobic sequential bioreactor. Dyes and Pigments, 70, 1–7. DOI: 10.1016/j.dyepig.2004.12.021. http://dx.doi.org/10.1016/j.dyepig.2004.12.02110.1016/j.dyepig.2004.12.021Search in Google Scholar
[22] Mittal, A., Kurup, L., & Mittal, J. (2007). Freundlich and Langmuir adsorption isotherms and kinetics for the removal of Tartrazine from aqueous solutions using hen feathers, Journal of Hazardous Materials, 146, 243–248. DOI: 10.1016/j.jhazmat.2006.12.012. http://dx.doi.org/10.1016/j.jhazmat.2006.12.01210.1016/j.jhazmat.2006.12.012Search in Google Scholar
[23] Modirshahla, N., & Behnajady, M. A. (2006). Photooxidative degradation of Malachite Green (MG) by UV/H2O2: Influence of operational parameters and kinetic modelling. Dyes and Pigments, 70, 54–59. DOI: 10.1016/j.dyepig.2005.04.012. http://dx.doi.org/10.1016/j.dyepig.2005.04.01210.1016/j.dyepig.2005.04.012Search in Google Scholar
[24] Muruganandham, M., & Swaminathan, M. (2004). Photochemical oxidation of reactive azo dye with UV-H2O2 process. Dyes and Pigments, 62, 269–275. DOI: 10.1016/j.dyepig.2003.12.006. http://dx.doi.org/10.1016/j.dyepig.2003.12.00610.1016/j.dyepig.2003.12.006Search in Google Scholar
[25] Pagga, U. T., & Taeger, K. (1994). Development of a method for adsorption of dyestuffs on activated sludge. Water Research, 28, 1051–1057. DOI: 10.1016/0043-1354(94)90190-2. http://dx.doi.org/10.1016/0043-1354(94)90190-210.1016/0043-1354(94)90190-2Search in Google Scholar
[26] Patel, R., & Suresh, S. (2006). Decolourization of azo dyes using magnesium-palladium system. Journal of Hazardous Materials, B137, 1729–1741. DOI: 10.1016/j.jhazmat.2006.05.019. http://dx.doi.org/10.1016/j.jhazmat.2006.05.01910.1016/j.jhazmat.2006.05.019Search in Google Scholar
[27] Rott, U., & Minke, R. (1999). Overview of wastewater treatment and recycling in the textile processing industry. Water Science and Technology, 40, 137–144. DOI: 10.1016/s0273-1223(99)00381-9. http://dx.doi.org/10.1016/S0273-1223(99)00381-910.1016/S0273-1223(99)00381-9Search in Google Scholar
[28] Salem, M. A., & Gemeay, A. H. (2000). Kinetics of the oxidation of tartrazine with peroxydisulfate in the presence and absence of catalysts. Monatshefte für Chemie, 131, 117–129. DOI: 10.1007/s007060050013. http://dx.doi.org/10.1007/s00706005001310.1007/s007060050013Search in Google Scholar
[29] Shu, H. Y., Chang, M. C., & Fan, H. J. (2004). Decolorization of azo dye acid black 1 by the UV/H2O2 process and optimization of operating parameters. Journal of Hazardous Materials, B113, 201–208. DOI: 10.1016/j.jhazmat.2004.06.007. http://dx.doi.org/10.1016/j.jhazmat.2004.06.00710.1016/j.jhazmat.2004.06.007Search in Google Scholar PubMed
[30] Shu, H. Y., & Chang, M. C. (2005). Decolorization effects of six azo dyes by O3, UV/O3 and UV/H2O2 processes. Dyes and Pigments, 65, 25–31. DOI: 10.1016/j.dyepig.2004.06.014. http://dx.doi.org/10.1016/j.dyepig.2004.06.01410.1016/j.dyepig.2004.06.014Search in Google Scholar
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Immobilisation of Clostridium spp. for production of solvents and organic acids
- A multi-analytical approach to amber characterisation
- Performance and lifetime of slurry packed capillary columns for high performance liquid chromatography
- Simultaneous determination of 32 antibiotics in aquaculture products using LC-MS/MS
- In vitro and in silico inhibition of angiotensin-converting enzyme by carbohydrates and cyclitols
- 5-Bromo- and 3,5-dibromo-2-hydroxy-N-phenylbenzamides — inhibitors of photosynthesis
- Biotransformation of iminodiacetonitrile to iminodiacetic acid by Alcaligenes faecalis cells immobilized in ACA-membrane liquid-core capsules
- Kinetics of metribuzin degradation by colloidal manganese dioxide in absence and presence of surfactants
- Asymmetric deformation of bubble shape: cause or effect of vortex-shedding?
- Equilibrium of chiral extraction of 4-nitro-d,l-phenylalanine with BINAP metal complexes
- Influence of superplasticizers on the course of Portland cement hydration
- Effect of valence of copper on adsorption of dimethyl sulfide from liquid hydrocarbon streams on activated bentonite
- Kinetics of tartrazine photodegradation by UV/H2O2 in aqueous solution
- Effect of exopolymeric substances on the kinetics of sorption and desorption of trivalent chromium in soil
- Thermal stability, antioxidant activity, and photo-oxidation of natural polyphenols
- Kinetics of chloride substitution in [Pt(bpma)Cl]+ and [Pt(gly-met-S,N,N)Cl] complexes by thiourea, nitrites, and iodides
- Synthesis of a photoactive gemini surfactant and its use in AGET ATRP miniemulsion polymerisation and UV curing
- Theoretical investigation on the reaction of HS+ with CH3NH2
Articles in the same Issue
- Immobilisation of Clostridium spp. for production of solvents and organic acids
- A multi-analytical approach to amber characterisation
- Performance and lifetime of slurry packed capillary columns for high performance liquid chromatography
- Simultaneous determination of 32 antibiotics in aquaculture products using LC-MS/MS
- In vitro and in silico inhibition of angiotensin-converting enzyme by carbohydrates and cyclitols
- 5-Bromo- and 3,5-dibromo-2-hydroxy-N-phenylbenzamides — inhibitors of photosynthesis
- Biotransformation of iminodiacetonitrile to iminodiacetic acid by Alcaligenes faecalis cells immobilized in ACA-membrane liquid-core capsules
- Kinetics of metribuzin degradation by colloidal manganese dioxide in absence and presence of surfactants
- Asymmetric deformation of bubble shape: cause or effect of vortex-shedding?
- Equilibrium of chiral extraction of 4-nitro-d,l-phenylalanine with BINAP metal complexes
- Influence of superplasticizers on the course of Portland cement hydration
- Effect of valence of copper on adsorption of dimethyl sulfide from liquid hydrocarbon streams on activated bentonite
- Kinetics of tartrazine photodegradation by UV/H2O2 in aqueous solution
- Effect of exopolymeric substances on the kinetics of sorption and desorption of trivalent chromium in soil
- Thermal stability, antioxidant activity, and photo-oxidation of natural polyphenols
- Kinetics of chloride substitution in [Pt(bpma)Cl]+ and [Pt(gly-met-S,N,N)Cl] complexes by thiourea, nitrites, and iodides
- Synthesis of a photoactive gemini surfactant and its use in AGET ATRP miniemulsion polymerisation and UV curing
- Theoretical investigation on the reaction of HS+ with CH3NH2