Startseite Influence of trace elements supplementation on the production of recombinant frutalin by Pichia pastoris KM71H in fed-batch process
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Influence of trace elements supplementation on the production of recombinant frutalin by Pichia pastoris KM71H in fed-batch process

  • Marcela Wanderley EMAIL logo , Carla Oliveira , Danyelly Bruneska , Lucília Domingues , José Lima Filho , José Teixeira und Solange Mussatto
Veröffentlicht/Copyright: 12. April 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Frutalin, a galactose-specific lectin used to detect specific tumour markers, is a protein with low expression level in breadfruit. In the present study, fed-batch fermentation in a stirred tank bioreactor was used as a strategy to enhance protein production by a recombinant Pichia pastoris KM71H. By using this process, the production of recombinant frutalin was 4-fold higher than the value obtained in shaker flasks batch assays. Supplementation of the fermentation medium with trace elements (Pichia trace minerals, PTM) was also evaluated in order to stimulate production of the recombinant protein. The addition of PTM to the minimum medium afforded a recombinant protein production of 13.4 mg L−1, which was 2.5-fold higher than that achieved from the culture medium without PTM supplementation. These results are significant as the development of strategies to improve the production of recombinant frutalin may broaden its application in cancer diagnosis.

[1] Amano, K., Takase, M., Ando, A., & Nagata, Y. (2003). Production of functional lectin in Pichia pastoris directed by cloned cDNA from Aleuria aurantia. Bioscience, Biotechnology, and Biochemistry, 67, 2277–2279. DOI: 10.1271/bbb.67.2277. http://dx.doi.org/10.1271/bbb.67.227710.1271/bbb.67.2277Suche in Google Scholar

[2] Arnau, C., Ramon, R., Casas, C., & Valero, F. (2010). Optimization of the heterologous production of a Rhizopus oryzae lipase in Pichia pastoris system using mixed substrates on controlled fed-batch bioprocess. Enzyme and Microbial Technology, 46, 494–500. DOI: 10.1016/j.enzmictec.2010.01.005. http://dx.doi.org/10.1016/j.enzmictec.2010.01.00510.1016/j.enzmictec.2010.01.005Suche in Google Scholar

[3] Baumgartner, P., Raemaekers, R. J. M., Durieux, A., Gatehouse, A., Davies, H., & Taylor, M. (2002). Large-scale production, purification, and characterisation of recombinant Phaseolus vulgaris phytohemagglutinin E-form expressed in the methylotrophic yeast Pichia pastoris. Protein Expression and Purification, 26, 394–405. DOI: 10.1016/s1046-5928(02)00555-7. http://dx.doi.org/10.1016/S1046-5928(02)00555-710.1016/S1046-5928(02)00555-7Suche in Google Scholar

[4] Baumgartner, P., Harper, K., Raemaekers, R. J. M., Durieux, A., Gatehouse, A. M. R., Davies, H. V., & Taylor, M. A. (2003). Large-scale production and purification of recombinant Galanthus nivalis agglutinin (GNA) expressed in the methylotrophic yeast Pichia pastoris. Biotechnology Letters, 25, 1281–1285. DOI: 10.1023/a:1025007901322. http://dx.doi.org/10.1023/A:102500790132210.1023/A:1025007901322Suche in Google Scholar

[5] Bezerra, W. M., Carvalho, C. P. S., Moreira, R. A., & Grangeiro, T. B. (2006). Establishment of a heterologous system for the expression of Canavalia brasiliensis lectin: a model for the study of protein splicing. Genetics and Molecular Research, 5, 216–223. Suche in Google Scholar

[6] Boze, H., Laborde, C., Chemardin, P., Richard, F., Venturin, C., Combarnous, Y., & Moulin, G. (2001). High-level secretory production of recombinant porcine follicle-stimulating hormone by Pichia pastoris. Process Biochemistry, 36, 907–913. DOI: 10.1016/s0032-9592(00)00296-x. http://dx.doi.org/10.1016/S0032-9592(00)00296-X10.1016/S0032-9592(00)00296-XSuche in Google Scholar

[7] Brando-Lima, A. C., Saldanha-Gama, R. F., Henriques, M. G. M. O., Monteiro-Moreira, A. C. O., Moreira, R. A., & Barja-Fidalgo, C. (2005). Frutalin, a galactose-binding lectin, induces chemotaxis and rearrangement of actin cytoskeleton in human neutrophils: Involvement of tyrosine kinase and phosphoinositide 3-kinase. Toxicology and Applied Pharmacology, 208, 145–154. DOI: 10.1016/j.taap.2005.02.012. http://dx.doi.org/10.1016/j.taap.2005.02.01210.1016/j.taap.2005.02.012Suche in Google Scholar

[8] Brando-Lima, A., Saldanha-Gama, R. F., Pereira, C. R., Villela, C. G., Sampaio, A. L. F., Monteiro-Moreira, A. C. O., Henriques, M. G. M. O., Moreira, R. A., & Barja-Fidalgo, C. (2006). Involvement of phosphatidylinositol-3 kinase-Akt and nuclear factor kappa-B pathways in the effect of frutalin on human lymphocyte. International Immunopharmacology, 6, 465–472. DOI: 10.1016/j.intimp.2005.09.008. http://dx.doi.org/10.1016/j.intimp.2005.09.00810.1016/j.intimp.2005.09.008Suche in Google Scholar

[9] Cereghino, J. L., & Cregg, J. M. (2000). Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiology Reviews, 24, 45–66. DOI: 10.1111/j. 1574-6976.2000.tb00532.x. http://dx.doi.org/10.1111/j.1574-6976.2000.tb00532.x10.1111/j.1574-6976.2000.tb00532.xSuche in Google Scholar

[10] Chauhan, A. K., Arora, D., & Khanna, N. (1999). A novel feeding strategy for enhanced protein production by fed-batch fermentation in recombinant Pichia pastoris. Process Biochemistry, 34, 139–145. DOI: 10.1016/s0032-9592(98)00080-6. http://dx.doi.org/10.1016/S0032-9592(98)00080-610.1016/S0032-9592(98)00080-6Suche in Google Scholar

[11] Chen, C. C., Wu, P. H., Huang, C. T., & Cheng, K. J. (2004). A Pichia pastoris fermentation strategy for enhancing the heterologous expression of an Escherichia coli phytase. Enzyme and Microbial Technology, 35, 315–320. DOI: 10.1016/j.enzmictec.2004.05.007. http://dx.doi.org/10.1016/j.enzmictec.2004.05.00710.1016/j.enzmictec.2004.05.007Suche in Google Scholar

[12] Daly, R., & Hearn, M. T. W. (2005). Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. Journal of Molecular Recognition, 18, 119–138. DOI: 10.1002/jmr.687. http://dx.doi.org/10.1002/jmr.68710.1002/jmr.687Suche in Google Scholar

[13] Ghosalkar, A., Sahai, V., & Srivastava, A. (2008). Optimization of chemically defined medium for recombinant Pichia pastoris for biomass production. Bioresource Technology, 99, 7906–7910. DOI: 10.1016/j.biortech.2008.01.059. http://dx.doi.org/10.1016/j.biortech.2008.01.05910.1016/j.biortech.2008.01.059Suche in Google Scholar

[14] Hang, H. F., Ye, X. H., Guo, M. J., Chu, J., Zhuang, Y. P., Zhang, M., & Zhang, S. L. (2009). A simple fermentation strategy for high-level production of recombinant phytase by Pichia pastoris using glucose as the growth substrate. Enzyme and Microbial Technology, 44, 185–188. DOI: 10.1016/j.enzmictec.2008.12.002. http://dx.doi.org/10.1016/j.enzmictec.2008.12.00210.1016/j.enzmictec.2008.12.002Suche in Google Scholar

[15] Iijima, N., Amano, K., Ando, A., & Nagata, Y. (2003). Production of fruiting-body lectins of Pleurotus cornucopiae in methylotrophic yeast Pichia pastoris. Journal of Bioscience and Bioengineering, 95, 416–418. DOI: 10.1016/s1389-1723(03)80079-8. 10.1016/S1389-1723(03)80079-8Suche in Google Scholar

[16] Khongto, B., Laoteng, K., & Tongta, A. (2011). Enhancing the production of gamma-linolenic acid in Hansenula polymorpha by fed-batch fermentation using response surface methodology. Chemical Papers, 65, 124–131. DOI: 10.2478/s11696-010-0099-2. http://dx.doi.org/10.2478/s11696-010-0099-210.2478/s11696-010-0099-2Suche in Google Scholar

[17] Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685. DOI: 10.1038/227680a0. http://dx.doi.org/10.1038/227680a010.1038/227680a0Suche in Google Scholar

[18] Lannoo, N., Vervecken, W., Proost, P., Rougé, P., & Van Damme, E. J. M. (2007). Expression of the nucleocytoplasmic tobacco lectin in the yeast Pichia pastoris. Protein Expression and Purification, 53, 275–282. DOI: 10.1016/j.pep.2007.01.007. http://dx.doi.org/10.1016/j.pep.2007.01.00710.1016/j.pep.2007.01.007Suche in Google Scholar

[19] Lee, C. Y., Nakano, A., Shiomi, N., Lee, E. K., & Katoh, S. (2003). Effects of substrate feed rates on heterologous protein expression by Pichia pastoris in DO-stat fed-batch fermentation. Enzyme and Microbial Technology, 33, 358–365. DOI: 10.1016/s0141-0229(03)00146-7. http://dx.doi.org/10.1016/S0141-0229(03)00146-710.1016/S0141-0229(03)00146-7Suche in Google Scholar

[20] Macauley-Patrick, S., Fazenda, M. L., McNeil, B., & Harvey, L. M. (2005). Heterologous protein production using the Pichia pastoris expression system. Yeast, 22, 249–270. DOI: 10.1002/yea.1208. http://dx.doi.org/10.1002/yea.120810.1002/yea.1208Suche in Google Scholar PubMed

[21] Oliveira, C., Felix, W., Moreira, R. A., Teixeira, J. A., & Domingues, L. (2008). Expression of frutalin, an α-d-galactose-binding jacalin-related lectin, in the yeast Pichia pastoris. Protein Expression and Purification, 60, 188–193. DOI: 10.1016/j.pep.2008.04.008. http://dx.doi.org/10.1016/j.pep.2008.04.00810.1016/j.pep.2008.04.008Suche in Google Scholar PubMed

[22] Peumans, W. J., & Van Damme, E. J. (1998). Plant lectins: specific tools for the identification, isolation, and characteri zation of O-linked glycans. Critical Reviews in Biochemistry and Molecular Biology, 33, 209–258. Suche in Google Scholar

[23] Peumans, W. J., Roy, S., Barre, A., Rouge, P., van Leuven, F., & van Damme, E. J. M. (1998). Elderberry (Sambucus nigra) contains truncated Neu5Ac(α-2,6)Gal/GalNAc-binding type 2 ribosome-inactivating proteins. FEBS Letters, 425, 35–39. DOI: 10.1016/s0014-5793(98)00193-8. http://dx.doi.org/10.1016/S0014-5793(98)00193-810.1016/S0014-5793(98)00193-8Suche in Google Scholar

[24] Raemaekers, R. J. M., de Muro, L., Gatehouse, J. A., & Fordham-Skelton, A. P. (1999). Functional phytohemagglutinin (PHA) and Galanthus nivalis agglutinin (GNA) expressed in Pichia pastoris. European Journal of Biochemistry, 265, 394–403. DOI: 10.1046/j.1432-1327.1999.00749.x. http://dx.doi.org/10.1046/j.1432-1327.1999.00749.x10.1046/j.1432-1327.1999.00749.xSuche in Google Scholar

[25] Rahman, M. A., Karsani, S. A., Othman, I., Rahman, P. S. A., & Hashim, O. H. (2002). Galactose-binding lectin from the seeds of champedak (Artocarpus integer): sequences of its subunits and interactions with human serum O-glycosylated glycoproteins. Biochemical and Biophysical Research Communications, 295, 1007–1013. DOI: 10.1016/s0006-291x(02)00795-7. http://dx.doi.org/10.1016/S0006-291X(02)00795-710.1016/S0006-291X(02)00795-7Suche in Google Scholar

[26] Roepcke, C. B. S., Vandenberghe, L. P. S., & Soccol, C. R. (2011). Optimized production of Pichia guilliermondii biomass with zinc accumulation by fermentation. Animal Feed Science and Technology, 163, 33–42. DOI: 10.1016/j.anifeedsci.2010.09.018. http://dx.doi.org/10.1016/j.anifeedsci.2010.09.01810.1016/j.anifeedsci.2010.09.018Suche in Google Scholar

[27] Sumisa, F., Iijima, N., Ando, A., Shiga, M., Kondo, K., Amano, K., & Nagata, Y. (2004). Properties of mycelial aggregatespecific lectin of Pleurotus cornucopiae produced in Pichia pastoris. Bioscience, Biotechnology, and Biochemistry, 68, 959–960. DOI: 10.1271/bbb.68.959. http://dx.doi.org/10.1271/bbb.68.95910.1271/bbb.68.959Suche in Google Scholar

[28] Taherzadeh, M. J., Adler, L., & Lidén, G. (2002). Strategies for enhancing fermentative production of glycerol-a review. Enzyme and Microbial Technology, 31, 53–66. DOI: 10.1016/s0141-0229(02)00069-8. http://dx.doi.org/10.1016/S0141-0229(02)00069-810.1016/S0141-0229(02)00069-8Suche in Google Scholar

[29] Todde, V., Veenhuis, M., & van der Klei, I. J. (2009). Autophagy: principles and significance in health and disease. Biochimica et Biophysica Acta (BBA) — Molecular Basis of Disease, 1792, 3–13. DOI: 10.1016/j.bbadis.2008.10.016. http://dx.doi.org/10.1016/j.bbadis.2008.10.01610.1016/j.bbadis.2008.10.016Suche in Google Scholar PubMed

[30] Xiao, A. F., Zhou, X. S., Zhou, L., & Zhang, Y. X. (2006). Improvement of cell viability and hirudin production by ascorbic acid in Pichia pastoris fermentation. Applied Microbiology and Biotechnology, 72, 837–844. DOI: 10.1007/s00253-006-0338-1. http://dx.doi.org/10.1007/s00253-006-0338-110.1007/s00253-006-0338-1Suche in Google Scholar PubMed

[31] Xie, J. L., Zhou, Q. W., Du, P., Gan, R. B., & Ye, Q. (2005). Use of different carbon sources in cultivation of recombinant Pichia pastoris for angiostatin production. Enzyme and Microbial Technology, 36, 210–216. DOI: 10.1016/j.enzmictec.2004.06.010. http://dx.doi.org/10.1016/j.enzmictec.2004.06.01010.1016/j.enzmictec.2004.06.010Suche in Google Scholar

Published Online: 2013-4-12
Published in Print: 2013-7-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0363-3/pdf
Button zum nach oben scrollen