Abstract
A very simple, cost-effective, chloride- and alkali-free, carbonate co-precipitation synthesis in aqueous medium was applied in the preparation of perovskite-type lanthanum manganese oxide-based powders, i.e. La0.70Sr0.30MnO3−δ (LSM) and La0.75Sr0.25Cr0.5Mn0.5O3−δ (LSCrM). The precursors so obtained yielded nano-structured perovskite oxides when treated at 900°C and 800°C, respectively. The measured BET surface areas were in the low-end range for high temperature oxides (4 m2 g−1 and 10 m2 g−1) but the X-ray crystallite size was as low as 50 nm for LSCrM and 90 nm for LSM.
[1] Campanati, M., Fornasari, G., & Vaccari, A. (2003). Fundamentals in the preparation of heterogeneous catalysts. Catalysis Today, 77, 299–314. DOI: 10.1016/s0920-5861(02)00375-9. http://dx.doi.org/10.1016/S0920-5861(02)00375-910.1016/S0920-5861(02)00375-9Suche in Google Scholar
[2] Chou, Y. S., Stevenson, J.W., Armstrong, T. R., & Pederson, L. R. (2000). Mechanical properties of La1−x SrxCo0.2Fe0.8O3 mixed-conducting perovskites made by the combustion synthesis technique. Journal of the American Ceramic Society, 83, 1457–1464. DOI: 10.1111/j.1151-2916.2000.tb01410.x. http://dx.doi.org/10.1111/j.1151-2916.2000.tb01410.x10.1111/j.1151-2916.2000.tb01410.xSuche in Google Scholar
[3] Colomer, M. T., Steele, B. C. H., & Kilner, J. A. (2002). Structural and electrochemical properties of the Sr0.8Ce0.1Fe0.7Co0.3O3−δ perovskite as cathode material for ITSOFCs. Solid State Ionics, 147, 41–48. DOI: 10.1016/s0167-2738(02)00002-4. http://dx.doi.org/10.1016/S0167-2738(02)00002-410.1016/S0167-2738(02)00002-4Suche in Google Scholar
[4] Cristiani, C., Bellotto, M., Forzatti, P., Lietti, L., Pasquon, I., & Villa, P. L. (1988). Preparation chemistry and phase transitions in the Zn-Mn-Cr system. Solid State Ionics, 26, 151–151. DOI: 10.1016/0167-2738(88)90068-9. http://dx.doi.org/10.1016/0167-2738(88)90068-910.1016/0167-2738(88)90068-9Suche in Google Scholar
[5] Cristiani, C., Zampori, L., Latorrata, S., Pelosato, R., Dotelli, G., & Ruffo, R. (2009). Carbonate coprecipitation synthesis of Sr- and Mg-doped LaGaO3. Materials Letters, 63, 1892–1894. DOI: 10.1016/j.matlet.2009.06.007. http://dx.doi.org/10.1016/j.matlet.2009.06.00710.1016/j.matlet.2009.06.007Suche in Google Scholar
[6] Deleebeeck, L., Fournier, J. L., & Birss, V. (2010). Comparison of Sr-doped and Sr-free La1−x SrxMn0.5Cr0.5O3±δ SOFC anodes. Solid State Ionics, 181, 1229–1237. DOI: 10.1016/j.ssi.2010.05.027. http://dx.doi.org/10.1016/j.ssi.2010.05.02710.1016/j.ssi.2010.05.027Suche in Google Scholar
[7] Garvie, R. C. (1965). The occurrence of metastable tetragonal zirconia as a crystallite size effect. The Journal of Physical Chemistry, 69, 1238–1243. DOI: 10.1021/j100888a024. http://dx.doi.org/10.1021/j100888a02410.1021/j100888a024Suche in Google Scholar
[8] Grabowska, H., Miśta, W., Trawczyński, J., Wrzyszcz, J., & Zawadzki, M. (2001). Catalytic alkylation of phenol with methanol over zinc aluminate. Research on Chemical Intermediates, 27, 305–313 DOI: 10.1163/156856701300356527. http://dx.doi.org/10.1163/15685670130035652710.1163/156856701300356527Suche in Google Scholar
[9] Groppi, G., Assandri, F., Bellotto, M., Cristiani, C., & Forzatti, P. (1995). The crystal-structure of Ba-β-alumina materials for high-temperature catalytic combustion. Journal of Solid State Chemistry, 114, 326–336. DOI: 10.1006/jssc.1995.1051. http://dx.doi.org/10.1006/jssc.1995.105110.1006/jssc.1995.1051Suche in Google Scholar
[10] Hsu, M. F., Wu, L. J., Wu, J. M., Shiu, Y. H., & Lin, K. F. (2006). Solid oxide fuel cell fabricated using all-perovskite materials. Electrochemical and Solid-State Letters, 9, A193–A195. DOI: 10.1149/1.2167929. http://dx.doi.org/10.1149/1.216792910.1149/1.2167929Suche in Google Scholar
[11] Huang, K., Feng, M., & Goodenough, J. B. (1996). Sol-gel synthesis of a new oxide-ion conductor Sr- and Mg-doped LaGaO3 perovskite. Journal of the American Ceramic Society, 79, 1100–1104. DOI: 10.1111/j.1151-2916.1996.tb08554.x. http://dx.doi.org/10.1111/j.1151-2916.1996.tb08554.x10.1111/j.1151-2916.1996.tb08554.xSuche in Google Scholar
[12] Huang, K., Tichy, R. S., & Goodenough, J. B. (1998). Superior perovskite oxide-ion conductor; strontium- and magnesiumdoped LaGaO3: I. phase relationships and electrical properties. Journal of the American Ceramic Society, 81, 2565–2575. DOI: 10.1111/j.1151-2916.1998.tb02662.x. http://dx.doi.org/10.1111/j.1151-2916.1998.tb02662.x10.1111/j.1151-2916.1998.tb02662.xSuche in Google Scholar
[13] Itoh, T., Shirasaki, S., Fujie, Y., Kitamura, N., Idemoto, Y., Osaka, K., Ofuchi, H., Hirayama, S., Honma, T., & Hirosawa, I. (2010). Study of charge density and crystal structure of (La0.75Sr0.25)MnO3.00 and (Ba0.5Sr0.5) (Co0.8Fe0.2)O2.33−δ at 500–900 K by in situ synchrotron X-ray diffraction. Journal of Alloys and Compounds, 491, 527–535. DOI: 10.1016/j.jallcom.2009.10.262. http://dx.doi.org/10.1016/j.jallcom.2009.10.26210.1016/j.jallcom.2009.10.262Suche in Google Scholar
[14] Jiang, S. P. (2003). Issues on development of (La,Sr)MnO3 cathode for solid oxide fuel cells. Journal of Power Sources, 124, 390–402. DOI: 10.1016/s0378-7753(03)00814-0. http://dx.doi.org/10.1016/S0378-7753(03)00814-010.1016/S0378-7753(03)00814-0Suche in Google Scholar
[15] Kim, C. H., Qi, G., Dahlberg, K., & Li, W. (2010). Strontiumdoped perovskites rival platinum catalysts for treating NOx in simulated diesel exhaust. Science, 327, 1624–1627. DOI: 10.1126/science.1184087. http://dx.doi.org/10.1126/science.118408710.1126/science.1184087Suche in Google Scholar PubMed
[16] Larson, A. C., & Von Dreele, R. B. (2004). General structure analysis system (GSAS). Report LAUR 86-748. Los Alamos, NM, USA: Los Alamos National Laboratory. Suche in Google Scholar
[17] Liu, H., Hu, C., & Wang, Z. L. (2006). Composite-hydroxidemediated approach for the synthesis of nanostructures of complex functional-oxides. Nano Letters, 6, 1535–1540. DOI: 10.1021/nl061253e. http://dx.doi.org/10.1021/nl061253e10.1021/nl061253eSuche in Google Scholar PubMed
[18] Pei, R. R., Chen, X., Suo, Y., Xiao, T., Ge, Q. Q., Yao, H. C., Wang, J. S., & Li, Z. J. (2012). Synthesis of La0.85Sr0.15Ga0.8Mg0.2O3−δ powder by carbonate co-precipitation combining with azeotropic-distillation process. Solid State Ionics, 219, 34–40. DOI: 10.1016/j.ssi.2012.05.022. http://dx.doi.org/10.1016/j.ssi.2012.05.02210.1016/j.ssi.2012.05.022Suche in Google Scholar
[19] Pelosato, R., Cristiani, C., Dotelli, G., Latorrata, S., Ruffo, R., & Zampori, L. (2010). Co-precipitation in aqueous medium of La0.8Sr0.2Ga0.8Mg0.2O3−δ via inorganic precursors. Journal of Power Sources, 195, 8116–8123. DOI: 10.1016/j.jpowsour.2010.07.046. http://dx.doi.org/10.1016/j.jpowsour.2010.07.04610.1016/j.jpowsour.2010.07.046Suche in Google Scholar
[20] Pelosato, R., Cristiani, C., Dotelli, G., Mariani, M., Donazzi, A., & Natali Sora, I. (2013). Co-precipitation synthesis of SOFC electrode materials. International Journal of Hydrogen Energy, 38, 65–71. DOI: 10.1016/j.ijhydene.2012.09.063. http://dx.doi.org/10.1016/j.ijhydene.2012.09.06310.1016/j.ijhydene.2012.09.063Suche in Google Scholar
[21] Peña, M. A., & Fierro, J. L. G. (2001). Chemical structures and performance of perovskite oxides. Chemical Reviews, 101, 1981–2018. DOI: 10.1021/cr980129f. http://dx.doi.org/10.1021/cr980129f10.1021/cr980129fSuche in Google Scholar PubMed
[22] Rietveld, H. M. (1969). A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2, 65–71. DOI: 10.1107/s0021889869006558. http://dx.doi.org/10.1107/S002188986900655810.1107/S0021889869006558Suche in Google Scholar
[23] Tao, S., & Irvine, J. T. S. (2003). A redox-stable efficient anode for solid-oxide fuel cells. Nature Materials, 2, 320–323. DOI: 10.1038/nmat871. http://dx.doi.org/10.1038/nmat87110.1038/nmat871Suche in Google Scholar PubMed
[24] Tao, S., Irvine, J. T. S., & Kilner, J. A. (2005). An efficient solid oxide fuel cell based upon single-phase perovskites. Advanced Materials, 17, 1734–1737. DOI: 10.1002/adma.200402007. http://dx.doi.org/10.1002/adma.20040200710.1002/adma.200402007Suche in Google Scholar
[25] Trimm, D. L. (1997). Deactivation and regeneration. In G. Ertl, H. Knözinger, & J. Weitkamp (Eds.), Handbook of heterogeneous catalysis (Vol. 1, Chapter 7, pp 1263–1282). Weinheim, Germany: Wiley-VCH. http://dx.doi.org/10.1002/9783527619474.ch710.1002/9783527619474.ch7Suche in Google Scholar
[26] Urban, J. J., Ouyang, L., Jo, M. H., Wang, D. S., & Park, H. (2004). Synthesis of single-crystalline La1−x BaxMnO3 nanocubes with adjustable doping levels. Nano Letters, 4, 1547–1550. DOI: 10.1021/nl049266k. http://dx.doi.org/10.1021/nl049266k10.1021/nl049266kSuche in Google Scholar
[27] Xu, S., Moritomo, Y., Ohoyama, K., & Nakamura, A. (2003). Neutron structural analysis of La1−x SrxMnO3 — variation of one-electron bandwidth W with hole doping. Journal of the Physical Society of Japan, 72, 709–712. DOI: 10.1143/jpsj.72.709. http://dx.doi.org/10.1143/JPSJ.72.70910.1143/JPSJ.72.709Suche in Google Scholar
[28] Zha, S., Tsang, P., Cheng, Z., & Liu, M. (2005). Electrical properties and sulfur tolerance of La0.75Sr0.25Cr1−x MnxO3 under anodic conditions. Journal of Solid State Chemistry, 178, 1844–1850. DOI: 10.1016/j.jssc.2005.03.027. http://dx.doi.org/10.1016/j.jssc.2005.03.02710.1016/j.jssc.2005.03.027Suche in Google Scholar
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Application of umbelliferone molecularly imprinted polymer in analysis of plant samples
- Determination of antioxidant activity using oxidative damage to plasmid DNA — pursuit of solvent optimization
- Nanosized sulfated zirconia as solid acid catalyst for the synthesis of 2-substituted benzimidazoles
- Removal of heavy metal ions from aqueous solutions using low-cost sorbents obtained from ash
- Base-catalysed reduction of pyruvic acid in near-critical water
- Solubility and micronisation of phenacetin in supercritical carbon dioxide
- Synthesis of nanostructured perovskite powders via simple carbonate co-precipitation
- Three-component one-pot reaction for the synthesis of β-amide ketones
- Spectral analysis of naringenin deprotonation in aqueous ethanol solutions
- Provenance study of volcanic glass using 266–1064 nm orthogonal double pulse laser induced breakdown spectroscopy
- A new, fully validated and interpreted quantitative structure-activity relationship model of p-aminosalicylic acid derivatives as neuraminidase inhibitors
- Interaction of oligonucleotides with benzo[c]phenanthridine alkaloid sanguilutine
Artikel in diesem Heft
- Application of umbelliferone molecularly imprinted polymer in analysis of plant samples
- Determination of antioxidant activity using oxidative damage to plasmid DNA — pursuit of solvent optimization
- Nanosized sulfated zirconia as solid acid catalyst for the synthesis of 2-substituted benzimidazoles
- Removal of heavy metal ions from aqueous solutions using low-cost sorbents obtained from ash
- Base-catalysed reduction of pyruvic acid in near-critical water
- Solubility and micronisation of phenacetin in supercritical carbon dioxide
- Synthesis of nanostructured perovskite powders via simple carbonate co-precipitation
- Three-component one-pot reaction for the synthesis of β-amide ketones
- Spectral analysis of naringenin deprotonation in aqueous ethanol solutions
- Provenance study of volcanic glass using 266–1064 nm orthogonal double pulse laser induced breakdown spectroscopy
- A new, fully validated and interpreted quantitative structure-activity relationship model of p-aminosalicylic acid derivatives as neuraminidase inhibitors
- Interaction of oligonucleotides with benzo[c]phenanthridine alkaloid sanguilutine