Startseite Equilibrium and kinetics of protein binding on ion-exchange cellulose membranes with grafted polymer layer
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Equilibrium and kinetics of protein binding on ion-exchange cellulose membranes with grafted polymer layer

  • Ivana Tatárová EMAIL logo , Peter Dreveňák , Anna Kosior und Milan Polakovič
Veröffentlicht/Copyright: 21. August 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The performance of weak and strong anion- and cation-exchange membrane adsorbents with a grafted gel layer (Sartobind Q, D, S, and C) was investigated using six proteins: bovine serum albumin, human serum albumin, α-lactalbumin, β-lactoglobulin, lysozyme, and myoglobin. Static binding experiments were used to assess the effect of pH and buffer concentration and to determine the adsorption isotherms for selected membrane/protein combinations. The equilibrium data were duly described either by the Langmuir or Freundlich isotherms. Dynamic binding experiments were carried out for the same membrane/protein combinations in a broad range of linear flow velocity. Both the dynamic binding capacity at 10 % breakthrough and the final binding capacity at complete breakthrough were independent of the flow velocity despite strong dispersion of the adsorption zone. A good match between the equilibrium data from static and dynamic experiments was obtained for the anion exchangers. The correlation between the dynamic binding capacity and protein molecule size was observed for the strong cation exchanger. This was due to the different accessibility of the gel layer for the protein molecules.

[1] Brahma, A., Mandal, C., & Bhattacharyya, D. (2005). Characterization of a dimeric unfolding intermediate of bovine serum albumin under mildly acidic condition. Biochimica et Biophysica Acta (BBA) — Proteins and Proteomics, 1751, 159–169. DOI: 10.1016/j.bbapap.2005.06.007. http://dx.doi.org/10.1016/j.bbapap.2005.06.00710.1016/j.bbapap.2005.06.007Suche in Google Scholar

[2] Demmer, W., & Nussbaumer, D. (1999). Large-scale membrane adsorbers. Journal of Chromatography A, 852, 73–81. DOI: 10.1016/s0021-9673(99)00603-2. http://dx.doi.org/10.1016/S0021-9673(99)00603-210.1016/S0021-9673(99)00603-2Suche in Google Scholar

[3] DePhillips, P., & Lenhoff, A. M. (2001). Determinants of protein retention characteristics on cation-exchange adsorbents. Journal of Chromatography A, 933, 57–72. DOI: 10.1016/s0021-9673(01)01275-4. http://dx.doi.org/10.1016/S0021-9673(01)01275-410.1016/S0021-9673(01)01275-4Suche in Google Scholar

[4] Dunmire, E. N., Plenys, A. M., & Katza, D. F. (1999). Spectrophotometric analysis of molecular transport in gels. Journal of Controlled Release, 57, 127–140. DOI: 10.1016/s0168-3659(98)00111-4. http://dx.doi.org/10.1016/S0168-3659(98)00111-410.1016/S0168-3659(98)00111-4Suche in Google Scholar

[5] Finette, G. M. S., Mao, Q. M., & Hearn, M. T. W. (1997). Comparative studies on the isothermal characteristics of proteins adsorbed under batch equilibrium conditions to ionexchange, immobilised metal ion affinity and dye affinity matrices with different ionic strength and temperature conditions. Journal of Chromatography A, 763, 71–90. DOI: 10.1016/s0021-9673(96)00956-9. http://dx.doi.org/10.1016/S0021-9673(96)00956-910.1016/S0021-9673(96)00956-9Suche in Google Scholar

[6] Francis, P., von Lieres, E., & Haynes, C. (2012). Zonal rate model for stacked membrane chromatography part II: Characterizing ion-exchange membrane chromatography under protein retention conditions. Biotechnology and Bioengineering, 109, 615–629. DOI: 10.1002/bit.24349. http://dx.doi.org/10.1002/bit.2434910.1002/bit.24349Suche in Google Scholar

[7] Gebauer, K. H., Thömmes, J., & Kula, M. R. (1997). Breakthrough performance of high-capacity membrane adsorbers in protein chromatography. Chemical Engineering Science, 52, 405–419. DOI: 10.1016/s0009-2509(96)00426-5. http://dx.doi.org/10.1016/S0009-2509(96)00426-510.1016/S0009-2509(96)00426-5Suche in Google Scholar

[8] Ghosh, R., & Wong, T. (2006). Effect of module design on the efficiency of membrane chromatographic separation processes. Journal of Membrane Science, 281, 532–540. DOI: 10.1016/j.memsci.2006.04.023. http://dx.doi.org/10.1016/j.memsci.2006.04.02310.1016/j.memsci.2006.04.023Suche in Google Scholar

[9] Gonzalez-Patino, F., Catalan, J., & Galan, M. A. (1993). Affinity chromatography: Effect of particle size on adsorption equilibrium and mass transfer kinetics. Chemical Engineering Science, 48, 1567–1573. DOI: 10.1016/0009-2509(93)80116-8. http://dx.doi.org/10.1016/0009-2509(93)80116-810.1016/0009-2509(93)80116-8Suche in Google Scholar

[10] Goodall, S., Grandison, A. S., Jauregi, P. J., & Price, J. (2008). Selective separation of the major whey proteins using ion exchange membranes. Journal of Dairy Science, 91, 1–10. DOI: 10.3168/jds.2007-0539. http://dx.doi.org/10.3168/jds.2007-053910.3168/jds.2007-0539Suche in Google Scholar PubMed

[11] Gramblička, M., Tothova, D., Antošova, M., & Polakovič, M. (2008). Influence of pH on adsorption of human immunoglobulin gamma, human serum albumin and horse myoglobin by commercial chromatographic materials designed for downstream processing of monoclonal antibodies. Acta Chimica Slovaca, 1, 85–94. Suche in Google Scholar

[12] Gu, Z., Zhu, X., Ni, S., Su, Z., & Zhou, H. M. (2004). Conformational changes of lysozyme refolding intermediates and implications for aggregation and renaturation. The International Journal of Biochemistry & Cell Biology, 36, 795–805. DOI: 10.1016/j.biocel.2003.08.015. http://dx.doi.org/10.1016/j.biocel.2003.08.01510.1016/j.biocel.2003.08.015Suche in Google Scholar

[13] Hahn, R., Bauerhansl, P., Shimahara, K., Wizniewski, C., Tscheliessnig, A., & Jungbauer, A. (2005). Comparison of protein A affinity sorbents: II. Mass transfer properties. Journal of Chromatography A, 1093, 98–110. DOI: 10.1016/j.chroma.2005.07.050. http://dx.doi.org/10.1016/j.chroma.2005.07.05010.1016/j.chroma.2005.07.050Suche in Google Scholar

[14] Han, B., Specht, R., Wickramasinghe, S. R., & Carlson, J. O. (2005). Binding Aedes aegypti densonucleosis virus to ion exchange membranes. Journal of Chromatography A, 1092, 114–124. DOI: 10.1016/j.chroma.2005.06.089. http://dx.doi.org/10.1016/j.chroma.2005.06.08910.1016/j.chroma.2005.06.089Suche in Google Scholar

[15] Hubbuch, J., Linden, T., Knieps, E., Ljunglöf, A., Thömmes, J., & Kula, M. R. (2003). Mechanism and kinetics of protein transport in chromatographic media studied by confocal laser scanning microscopy: Part I. The interplay of sorbent structure and fluid phase conditions. Journal of Chromatography A, 1021, 93–104. DOI: 10.1016/j.chroma.2003.08.112. http://dx.doi.org/10.1016/j.chroma.2003.08.11210.1016/j.chroma.2003.08.112Suche in Google Scholar

[16] Hunter, A. K., & Carta, G. (2001). Effects of bovine serum albumin heterogeneity on frontal analysis with anion-exchange media. Journal of Chromatography A, 937, 13–19. DOI: 10.1016/s0021-9673(01)01301-2. http://dx.doi.org/10.1016/S0021-9673(01)01301-210.1016/S0021-9673(01)01301-2Suche in Google Scholar

[17] Kawai, T., Saito, K., & Lee, W. (2003). Protein binding to polymer brush, based on ion-exchange, hydrophobic, and affinity interactions. Journal of Chromatography B, 790, 131–142. DOI: 10.1016/s1570-0232(03)00090-4. http://dx.doi.org/10.1016/S1570-0232(03)00090-410.1016/S1570-0232(03)00090-4Suche in Google Scholar

[18] Knudsen, H. L., Fahrner, R. L., Xu, Y., Norling, L. A., & Blank, G. S. (2001). Membrane ion-exchange chromatography for process-scale antibody purification. Journal of Chromatography A, 907, 145–154. DOI: 10.1016/s0021-9673(00)01041-4. http://dx.doi.org/10.1016/S0021-9673(00)01041-410.1016/S0021-9673(00)01041-4Suche in Google Scholar

[19] Kubota, N., Miura, S., Saito, K., Sugita, K., Watanabe, K., & Sugo, T. (1996). Comparison of protein adsorption by anionexchange interaction onto porous hollow-fiber membrane and gel bead-packed bed. Journal of Membrane Science, 117, 135–142. DOI: 10.1016/0376-7388(96)00054-3. http://dx.doi.org/10.1016/0376-7388(96)00054-310.1016/0376-7388(96)00054-3Suche in Google Scholar

[20] Langford, J. F., Schure, M. R., Yao, Y., Maloney, S. F., & Lenhoff, A. M. (2006). Effects of pore structure and molecular size on diffusion in chromatographic adsorbents. Journal of Chromatography A, 1126, 95–106. DOI: 10.1016/j.chroma.2006.06.060. http://dx.doi.org/10.1016/j.chroma.2006.06.06010.1016/j.chroma.2006.06.060Suche in Google Scholar

[21] Miyabe, K., & Guiochon, G. (2000). Kinetic study of the mass transfer of bovine serum albumin in anion-exchange chromatography. Journal of Chromatography A, 866, 147–171. DOI: 10.1016/s0021-9673(99)01127-9. http://dx.doi.org/10.1016/S0021-9673(99)01127-910.1016/S0021-9673(99)01127-9Suche in Google Scholar

[22] Pabst, T. M., Buckley, J. J., Ramasubramanyan, N., & Hunter, A. K. (2007). Comparison of strong anion-exchangers for the purification of a PEGylated protein. Journal of Chromatography A, 1147, 172–182. DOI: 10.1016/j.chroma.2007.02.051. http://dx.doi.org/10.1016/j.chroma.2007.02.05110.1016/j.chroma.2007.02.051Suche in Google Scholar

[23] Peterson, E. A., & Sober, H. A. (1956). Chromatography of proteins. I. Cellulose ion-exchange adsorbents. Journal of the American Chemical Society, 78, 751–755. DOI: 10.1021/ja01585a016. http://dx.doi.org/10.1021/ja01585a01610.1021/ja01585a016Suche in Google Scholar

[24] Puerta, A., Vidal-Madjar, C., Jaulmes, A., Diez-Masa, J. C., & de Frutos, M. (2006). Frontal analysis for characterizing the adsorption-desorption behavior of β-lactoglobulin on immunoadsorbents. Journal of Chromatography A, 1119, 34–42. DOI: 10.1016/j.chroma.2005.12.010. http://dx.doi.org/10.1016/j.chroma.2005.12.01010.1016/j.chroma.2005.12.010Suche in Google Scholar

[25] Rao, C. S. (2001). Purification of large proteins using ionexchange membranes. Process Biochemistry, 37, 247–256. DOI: 10.1016/s0032-9592(01)00207-2. http://dx.doi.org/10.1016/S0032-9592(01)00207-210.1016/S0032-9592(01)00207-2Suche in Google Scholar

[26] Reichert, U., Linden, T., Belfort, G., Kula, M. R., & Thömmes, J. (2002). Visualising protein adsorption to ion-exchange membranes by confocal microscopy. Journal of Membrane Science, 199, 161–166. DOI: 10.1016/s0376-7388(01)00693-7. http://dx.doi.org/10.1016/S0376-7388(01)00693-710.1016/S0376-7388(01)00693-7Suche in Google Scholar

[27] Sarfert, F. T., & Etzel, M. R. (1997). Mass transfer limitations in protein separations using ion-exchange membranes. Journal of Chromatography A, 764, 3–20. DOI: 10.1016/S0021-9673(96)00894-1. http://dx.doi.org/10.1016/S0021-9673(96)00894-110.1016/S0021-9673(96)00894-1Suche in Google Scholar

[28] Shiosaki, A., Goto, M., & Hirose, T. (1994). Frontal analysis of protein adsorption on a membrane adsorber. Journal of Chromatography A, 679, 1–9. DOI: 10.1016/0021-9673(94)80306-4. http://dx.doi.org/10.1016/0021-9673(94)80306-410.1016/0021-9673(94)80306-4Suche in Google Scholar

[29] Shirataki, H., Sudoh, C., Eshima, T., Yokoyama, Y., & Okuyama, K. (2011). Evaluation of an anion-exchange hollow-fiber membrane adsorber containing Γ-ray grafted glycidyl methacrylate chains. Journal of Chromatography A, 1218, 2381–2388. DOI: 10.1016/j.chroma.2010.10.071. http://dx.doi.org/10.1016/j.chroma.2010.10.07110.1016/j.chroma.2010.10.071Suche in Google Scholar

[30] Singh, N., Wang, J., Ulbricht, M., Wickramasinghe, S. R., & Husson, S. M. (2008). Surface-initiated atom transfer radical polymerization: A new method for preparation of polymeric membrane adsorbers. Journal of Membrane Science, 309, 64–72. DOI: 10.1016/j.memsci.2007.10.007. http://dx.doi.org/10.1016/j.memsci.2007.10.00710.1016/j.memsci.2007.10.007Suche in Google Scholar

[31] Staby, A., Jensen, I. H., & Mollerup, I. (2000). Comparison of chromatographic ion-exchange resins: I. Strong anionexchange resins. Journal of Chromatography A, 897, 99–111. DOI: 10.1016/s0021-9673(00)00780-9. http://dx.doi.org/10.1016/S0021-9673(00)00780-910.1016/S0021-9673(00)00780-9Suche in Google Scholar

[32] Stein, A., & Kiesewetter, A. (2007). Cation exchange chromatography in antibody purification: pH screening for optimized binding and HCP removal. Journal of Chromatography B, 848, 151–158. DOI: 10.1016/j.jchromb.2006.10.010. http://dx.doi.org/10.1016/j.jchromb.2006.10.01010.1016/j.jchromb.2006.10.010Suche in Google Scholar PubMed

[33] Tatarova, I., Faber, R., Denoyel, R., & Polakovič, M. (2009). Characterization of pore structure of a strong anion-exchange membrane adsorbent under different buffers and salt concentration conditions. Journal of Chromatography A, 1216, 941–947. DOI: 10.1016/j.chroma.2008.12.018. http://dx.doi.org/10.1016/j.chroma.2008.12.01810.1016/j.chroma.2008.12.018Suche in Google Scholar PubMed

[34] van Beijeren, P., Kreis, P., & Zeiner, T. (2012). Ion exchange membrane adsorption of bovine serum albumin-Impact of operating and buffer conditions on breakthrough curves. Journal of Membrane Science, 415–416, 568–576. DOI: 10.1016/j.memsci.2012.05.051. http://dx.doi.org/10.1016/j.memsci.2012.05.05110.1016/j.memsci.2012.05.051Suche in Google Scholar

[35] Wang, J., Faber, R., & Ulbricht, M. (2009). Influence of pore structure and architecture of photo-grafted functional layers on separation performance of cellulose-based macroporous membrane adsorbers. Journal of Chromatography A, 1216, 6490–6501. DOI: 10.1016/j.chroma.2009.07.042. http://dx.doi.org/10.1016/j.chroma.2009.07.04210.1016/j.chroma.2009.07.042Suche in Google Scholar PubMed

[36] Wickramasinghe, S. R., Carlson, J. O., Teske, C., Hubbuch, J., & Ulbricht, M. (2006). Characterizing solute binding to macroporous ion exchange membrane adsorbers using confocal laser scanning microscopy. Journal of Membrane Science, 281, 609–618. DOI: 10.1016/j.memsci.2006.04.032. http://dx.doi.org/10.1016/j.memsci.2006.04.03210.1016/j.memsci.2006.04.032Suche in Google Scholar

[37] Wrzosek, K., Gramblička, M., & Polakovič, M. (2009). Influence of ligand density on antibody binding capacity of cationexchange adsorbents. Journal of Chromatography A, 1216, 5039–5044. DOI: 10.1016/j.chroma.2009.04.073. http://dx.doi.org/10.1016/j.chroma.2009.04.07310.1016/j.chroma.2009.04.073Suche in Google Scholar PubMed

[38] Wrzosek, K., Gramblička, M., Tothova, D., Antošova, M., & Polakovič, M. (2010). Impact of ionic strength on adsorption capacity of chromatographic particles employed in separation of monoclonal antibodies. Chemical Papers, 64, 461–468. DOI: 10.2478/s11696-010-0019-5. http://dx.doi.org/10.2478/s11696-010-0019-510.2478/s11696-010-0019-5Suche in Google Scholar

[39] Wrzosek, K., & Polakovič, M. (2011). Effect of pH on protein adsorption capacity of strong cation exchangers with grafted layer. Journal of Chromatography A, 1218, 6987–6994. DOI: 10.1016/j.chroma.2011.07.097. http://dx.doi.org/10.1016/j.chroma.2011.07.09710.1016/j.chroma.2011.07.097Suche in Google Scholar PubMed

[40] Zhou, J. X., Tressel, T., Gottschalk, U., Solamo, F., Pastor, A., Dermawan, S., Hong, T., Reif, O., Mora, J., Hutchison, F., & Murphy, M. (2006). New Q membrane scale-down model for process-scale antibody purification. Journal of Chromatography A, 1134, 66–73. DOI: 10.1016/j.chroma.2006.08.064. http://dx.doi.org/10.1016/j.chroma.2006.08.06410.1016/j.chroma.2006.08.064Suche in Google Scholar PubMed

Published Online: 2013-8-21
Published in Print: 2013-12-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0269-5/pdf?lang=de
Button zum nach oben scrollen