Abstract
Possibilities of a multicell isoperibolic-semiadiabatic calorimeter application for the measurement of hydration heat and maximum temperature reached in mixtures of various compositions during their setting and early stages of hardening are presented. Measurements were aimed to determine the impact of selected components’ content on the course of ordinary Portland cement (OPC) hydration. The following components were selected for the determination of the hydration behaviour in mixtures: very finely ground granulated blast furnace slag (GBFS), silica fume (microsilica, SF), finely ground quartz sand (FGQ), and calcined bauxite (CB). A commercial polycarboxylate type superplasticizer was also added to the selected mixtures. All maximum temperatures measured for selected mineral components were lower than that reached for cement. The maximum temperature increased with the decreasing amount of components in the mixture for all components except for silica fume. For all components, except for CB, the values of total released heat were higher than those for pure Portland cement samples.
[1] Baert, G., Hoste, S., De Schutter, G., & De Belie, N. (2008). Reactivity of fly ash in cement paste studied by means of thermogravimetry and isothermal calorimetry. Journal of Thermal Analysis and Calorimetry, 94, 485–492. DOI: 10.1007/s10973-007-8787-z. http://dx.doi.org/10.1007/s10973-007-8787-z10.1007/s10973-007-8787-zSearch in Google Scholar
[2] Brandštetr, J., Polcer, J., Krátký, J., Holešinský, R., & Havlica, J. (2001). Possibilities of the use of isoperibolic calorimetry for assessing the hydration behaviour of cementitious systems. Cement and Concrete Research, 31, 941–947. DOI: 10.1016/s0008-8846(01)00495-1. http://dx.doi.org/10.1016/S0008-8846(01)00495-110.1016/S0008-8846(01)00495-1Search in Google Scholar
[3] Duchesne, J., & Reardon, E. J. (1995). Measurement and prediction of portlandite solubility in alkali solutions. Cement and Concrete Research, 25, 1043–1053. DOI: 10.1016/0008-8846(95)00099-x. http://dx.doi.org/10.1016/0008-8846(95)00099-X10.1016/0008-8846(95)00099-XSearch in Google Scholar
[4] European Committee for Standardization (2003). European standard: Methods of testing cement — Part 8: Heat of hydration — Solution method. EN 196-8:2003 E. Brussels, Belgium. Search in Google Scholar
[5] European Committee for Standardization (2010). European standard: Methods of testing cement — Part 9: Heat of hydration — Semi-adiabatic method. EN 196-9:2010 E. Brussels, Belgium. Search in Google Scholar
[6] Erdem, T. K., & Kirca, Ö. (2008). Use of binary and ternary blends in high strength concrete. Construction and Building Materials, 22, 1477–1483. DOI:10.1016/j.conbuildmat.2007.03.026. http://dx.doi.org/10.1016/j.conbuildmat.2007.03.02610.1016/j.conbuildmat.2007.03.026Search in Google Scholar
[7] Glasser, F. P., Marchand, J., & Samson, E. (2008). Durability of concrete—degradation phenomena involving detrimental chemical reactions. Cement and Concrete Research, 38, 226–246. DOI:10.1016/j.cemconres.2007.09.015. http://dx.doi.org/10.1016/j.cemconres.2007.09.01510.1016/j.cemconres.2007.09.015Search in Google Scholar
[8] Gruyaert, E., Robeyst, N., & De Belie, N. (2008). Modelling the hydration heat of Portland cement blended with blastfurnace slag. In Non-traditional cement and concrete III, June 10–12, 2008 (pp. 302–311). Brno, Czech Republic: Brno University of Technology. Search in Google Scholar
[9] Gruyaert, E., Robeyst, N., & De Belie, N. (2010). Study of the hydration of Portland cement blended with blastfurnace slag by calorimetry and thermogravimetry. Journal of Thermal Analysis and Calorimetry, 102, 941–951. DOI: 10.1007/s10973-010-0841-6. http://dx.doi.org/10.1007/s10973-010-0841-610.1007/s10973-010-0841-6Search in Google Scholar
[10] Guan, B., Ye, Q., Zhang, J., Lou, W., & Wu, Z. (2010). Interaction between α-calcium sulfate hemihydrate and superplasticizer from the point of adsorption characteristics, hydration and hardening process. Cement and Concrete Research, 40, 253–259. DOI:10.1016/j.cemconres.2009.08.027. http://dx.doi.org/10.1016/j.cemconres.2009.08.02710.1016/j.cemconres.2009.08.027Search in Google Scholar
[11] Habert, G., Choupay, N., Montel, J. M., Guillaume, D., & Escadeillas, G. (2008). Effects of the secondary minerals of the natural pozzolans on their pozzolanic activity. Cement and Concrete Research, 38, 963–975. DOI:10.1016/j.cemconres.2008.02.005. http://dx.doi.org/10.1016/j.cemconres.2008.02.00510.1016/j.cemconres.2008.02.005Search in Google Scholar
[12] Ježo, Ľ., Palou, M., Kozánková, J., & Ifka, T. (2010). Determination of activation effect of Ca(OH)2 upon the hydration of BFS and related heat by isothermal calorimeter. Journal of Thermal Analysis and Calorimetry, 101, 585–593. DOI: 10.1007/s10973-010-0849-y. http://dx.doi.org/10.1007/s10973-010-0849-y10.1007/s10973-010-0849-ySearch in Google Scholar
[13] Khatib, J. M. (2008). Metakaolin concrete at a low water to binder ratio. Construction and Building Materials, 22, 1691–1700. DOI:10.1016/j.conbuildmat.2007.06.003. http://dx.doi.org/10.1016/j.conbuildmat.2007.06.00310.1016/j.conbuildmat.2007.06.003Search in Google Scholar
[14] Korpa, A., Kowald, T., & Trettin, R. (2008). Hydration behaviour, structure and morphology of hydration phases in advanced cement-based systems containing micro and nanoscale pozzolanic additives. Cement and Concrete Research, 38, 955–962. DOI:10.1016/j.cemconres.2008.02.010. http://dx.doi.org/10.1016/j.cemconres.2008.02.01010.1016/j.cemconres.2008.02.010Search in Google Scholar
[15] Krátký, J. (2004). Vliv přísad na vlastnosti anorganicko organických kompozitů. Unpublished PhD. thesis, Brno University of Technology, Brno, Czech Republic. Search in Google Scholar
[16] Oner, A., & Akyuz, S. (2007). An experimental study on optimum usage of GGBS for the compressive strength of concrete. Cement and Concrete Composites, 29, 505–514. DOI:10.1016/j.cemconcomp.2007.01.001. http://dx.doi.org/10.1016/j.cemconcomp.2007.01.00110.1016/j.cemconcomp.2007.01.001Search in Google Scholar
[17] Pane, I., & Hansen, W. (2005). Investigation of blended cement hydration by isothermal calorimetry and thermal analysis. Cement and Concrete Research, 35, 1155–1164. DOI:10.1016/j.cemconres.2004.10.027. http://dx.doi.org/10.1016/j.cemconres.2004.10.02710.1016/j.cemconres.2004.10.027Search in Google Scholar
[18] Rahhal, V., & Talero, R. (2009). Calorimetry of Portland cement with silica fume, diatomite and quartz additions. Construction and Building Materials, 23, 3367–3374. DOI:10.1016/j.conbuildmat.2009.06.003. http://dx.doi.org/10.1016/j.conbuildmat.2009.06.00310.1016/j.conbuildmat.2009.06.003Search in Google Scholar
[19] Siler, P., Kratky, J., & De Belie, N. (2012). Isothermal and solution calorimetry to assess the effect of superplasticizers and mineral admixtures on cement hydration. Journal of Thermal Analysis and Calorimetry, 107, 313–320. DOI: 10.1007/s10973-011-1479-8. http://dx.doi.org/10.1007/s10973-011-1479-810.1007/s10973-011-1479-8Search in Google Scholar
[20] Simard, M. A., Nkinamubanzi, P. C., Jolicoeur, C., Perraton, D., & Aïtcin, P. C. (1993). Calorimetry, rheology and compressive strength of superplasticized cement pastes. Cement and Concrete Research, 23, 939–950. DOI: 10.1016/0008-8846(93)90048-e. http://dx.doi.org/10.1016/0008-8846(93)90048-E10.1016/0008-8846(93)90048-ESearch in Google Scholar
[21] Sleiman, H., Perrot, A., & Amziane, S. (2010). A new look at the measurement of cementitious paste setting by Vicat test. Cement and Concrete Research, 40, 681–686. DOI:10.1016/j.cemconres.2009.12.001. http://dx.doi.org/10.1016/j.cemconres.2009.12.00110.1016/j.cemconres.2009.12.001Search in Google Scholar
[22] Vessalas, K., Thomas, P. S., Ray, A. S., Guerbois, J. P., Joyce, P., & Haggman, J. (2009). Pozzolanic reactivity of the supplementary cementitious material pitchstone fines by thermogravimetric analysis. Journal of Thermal Analysis and Calorimetry, 97, 71–76. DOI: 10.1007/s10973-008-9708-5. http://dx.doi.org/10.1007/s10973-008-9708-510.1007/s10973-008-9708-5Search in Google Scholar
[23] Wild, S., & Khatib, J. M. (1997). Portlandite consumption in metakaolin cement pastes and mortars. Cement and Concrete Research, 27, 137–146. DOI: 10.1016/s0008-8846(96)00187-1. http://dx.doi.org/10.1016/S0008-8846(96)00187-110.1016/S0008-8846(96)00187-1Search in Google Scholar
[24] Yamada, K. (2011). Basics of analytical methods used for the investigation of interaction mechanism between cements and superplasticizers. Cement and Concrete Research, 41, 793–798. DOI:10.1016/j.cemconres.2011.03.007. http://dx.doi.org/10.1016/j.cemconres.2011.03.00710.1016/j.cemconres.2011.03.007Search in Google Scholar
[25] Zingg, A., Holzer, L., Kaech, A., Winnefeld, F., Pakusch, J., Becker, S., & Gauckler, L. (2008). The microstructure of dispersed and non-dispersed fresh cement pastes — new insight by cryo-microscopy. Cement and Concrete Research, 38, 522–529. DOI:10.1016/j.cemconres.2007.11.007. http://dx.doi.org/10.1016/j.cemconres.2007.11.00710.1016/j.cemconres.2007.11.007Search in Google Scholar
© 2012 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Characterisation of VOC composition of Slovak monofloral honeys by GC×GC-TOF-MS
- Combustion-derived CdO nanopowder as a heterogeneous basic catalyst for efficient synthesis of sulfonamides from aromatic amines using p-toluenesulfonyl chloride
- Molybdate sulfonic acid: preparation, characterization, and application as an effective and reusable catalyst for octahydroxanthene-1,8-dione synthesis
- Enantioselective extraction of hydrophilic 2-chloromandelic acid enantiomers by hydroxypropyl-β-cyclodextrin: experiments and modeling
- Attrition of dolomitic lime in a fluidized-bed reactor at high temperatures
- Improvement of aquatic pollutant partition coefficient correlations using 1D molecular descriptors — chlorobenzene case study
- Mercury characterisation in urban particulate matter
- Thermal decomposition of lanthanide(III) complexes of bis-(salicylaldehyde)-1,3-propylenediimine Schiff base ligand
- Effect of hyamine on electrochemical behaviour of brass alloy in HNO3 solution
- Calorimetric determination of the effect of additives on cement hydration process
- Entrapment of ethyl vanillin in calcium alginate and calcium alginate/poly(vinyl alcohol) beads
- Facile synthesis of 3-substituted quinazoline-2,4-dione and 2,3-di-substituted quinazolinone derivatives
- Virtual screening of imidazole analogs as potential hepatitis C virus NS5B polymerase inhibitors
- A new phenanthroindolizidine alkaloid from Tylophora indica
Articles in the same Issue
- Characterisation of VOC composition of Slovak monofloral honeys by GC×GC-TOF-MS
- Combustion-derived CdO nanopowder as a heterogeneous basic catalyst for efficient synthesis of sulfonamides from aromatic amines using p-toluenesulfonyl chloride
- Molybdate sulfonic acid: preparation, characterization, and application as an effective and reusable catalyst for octahydroxanthene-1,8-dione synthesis
- Enantioselective extraction of hydrophilic 2-chloromandelic acid enantiomers by hydroxypropyl-β-cyclodextrin: experiments and modeling
- Attrition of dolomitic lime in a fluidized-bed reactor at high temperatures
- Improvement of aquatic pollutant partition coefficient correlations using 1D molecular descriptors — chlorobenzene case study
- Mercury characterisation in urban particulate matter
- Thermal decomposition of lanthanide(III) complexes of bis-(salicylaldehyde)-1,3-propylenediimine Schiff base ligand
- Effect of hyamine on electrochemical behaviour of brass alloy in HNO3 solution
- Calorimetric determination of the effect of additives on cement hydration process
- Entrapment of ethyl vanillin in calcium alginate and calcium alginate/poly(vinyl alcohol) beads
- Facile synthesis of 3-substituted quinazoline-2,4-dione and 2,3-di-substituted quinazolinone derivatives
- Virtual screening of imidazole analogs as potential hepatitis C virus NS5B polymerase inhibitors
- A new phenanthroindolizidine alkaloid from Tylophora indica