Startseite A concise synthesis of enantiomerically pure aroyl-l-alanines and dihydroaroyl-l-alanines
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A concise synthesis of enantiomerically pure aroyl-l-alanines and dihydroaroyl-l-alanines

  • Mária Gardiánová EMAIL logo , Ľuboš Slížik , Anna Koreňová , František Považanec und Dušan Berkeš
Veröffentlicht/Copyright: 20. September 2012
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Straightforward preparation of enantiomerically highly enriched N-substituted aroylalanines has been developed. This process involves the combination of crystallization-induced asymmetric transformation and a conjugate addition of N-nucleophiles to the corresponding aroylacrylic acids. Further transformations to 3,4-dichlorobenzoylalanine and aroyl-l-alanines via periodate oxidation and stereoselective reduction to N-substituted syn-4-aryl-4-hydroxy-2-aminobutanoic acids are also described.

[1] Anderson, N. G. (2005). Developing processes for crystallization-induced asymmetric transformation. Organic Process Research & Development, 9, 800–813. DOI: 10.1021/op050119y. http://dx.doi.org/10.1021/op050119y10.1021/op050119ySuche in Google Scholar

[2] Awasthi, A. K., Boys, M. L., Cain-Janicki, K. J., Colson, P. J., Doubleday, W. W., Duran, J. E., & Farid, P. N. (2005). Practical enantioselective synthesis of β-substituted-β-amino esters. The Journal of Organic Chemistry, 70, 5387–5397. DOI: 10.1021/jo050177h. http://dx.doi.org/10.1021/jo050177h10.1021/jo050177hSuche in Google Scholar

[3] Barfoot, C. W., Harvey, J. E., Kenworthy, M. N., Kilburn, J. P., Ahmed, M., & Taylor, R. J. K. (2005). Highly functionalised organolithium and organoboron reagents for the preparation of enantiomerically pure α-amino acids. Tetrahedron, 61, 3403–3417. DOI: 10.1016/j.tet.2004.10.097. http://dx.doi.org/10.1016/j.tet.2004.10.09710.1016/j.tet.2004.10.097Suche in Google Scholar

[4] Berkeš, D., Kolarovič, A., & Považanec, F. (2000). Stereoselective sodium borohydride reduction, catalyzed by manganese(II) chloride, of γ-oxo-α-amino acids. A practical approach to syn-γ-hydroxy-α-amino acids. Tetrahedron Letters, 41, 5257–5260. DOI: 10.1016/s0040-4039(00)00800-5. http://dx.doi.org/10.1016/S0040-4039(00)00800-510.1016/S0040-4039(00)00800-5Suche in Google Scholar

[5] Berkeš, D., Kolarovič, A., Manduch, R., Baran, P., & Považanec, F. (2005). Crystallization-induced asymmetric transformations (CIAT): stereoconvergent acid-catalyzed lactonization of substituted 2-amino-4-aryl-4-hydroxybutanoic acids. Tetrahedron: Asymmetry, 16, 1927–1934. DOI: 10.1016/j.tetasy.2005.04.024. http://dx.doi.org/10.1016/j.tetasy.2005.04.02410.1016/j.tetasy.2005.04.024Suche in Google Scholar

[6] Berkeš, D., Jakubec, P., Winklerová, D., Považanec, F., & Daich, A. (2007). CIAT with simultaneous epimerization at two stereocenters. Synthesis of substituted β-methyl-α-homophenylalanines. Organic & Biomolecular Chemistry, 5, 121–124. DOI: 10.1039/b613103d. http://dx.doi.org/10.1039/b613103d10.1039/B613103DSuche in Google Scholar

[7] Bianchi, M., Butti, A., Christidis, Y., Perronnet, J., Barzaghi, F., Cesana, R., & Nencioni, A. (1988). Gastric antisecretory, anti-ulcer and cytoprotective properties of substituted (E)-4-phenyl- and heteroaryl-4-oxo-2-butenoic acids. European Journal of Medicinal Chemistry, 23, 45–52. DOI: 10.1016/0223-5234(88)90166-3. http://dx.doi.org/10.1016/0223-5234(88)90166-310.1016/0223-5234(88)90166-3Suche in Google Scholar

[8] Brands, K. M. J., & Davies, A. J. (2006). Crystallizationinduced diastereomer transformations. Chemical Reviews, 106, 2711–2733. DOI: 10.1021/cr0406864. http://dx.doi.org/10.1021/cr040686410.1021/cr0406864Suche in Google Scholar

[9] Ferraris, D., Young, B., Cox, C., Dudding, T., Drury, W. J., III, Ryzhkov, L., Taggi, A. E., & Lectka, T. (2001). Catalytic, enantioselective alkylation of α-imino esters: The synthesis of nonnatural α-amino acid derivatives. Journal of the American Chemical Society, 124, 67–77. DOI: 10.1021/ja016838j. http://dx.doi.org/10.1021/ja016838j10.1021/ja016838jSuche in Google Scholar

[10] Golubev, A. S., Sewald, N., & Burger, K. (1996). Synthesis of γ-oxo α-amino acids from L-aspartic acid. Tetrahedron, 52, 14757–14776. DOI: 10.1016/0040-4020(96)00942-8. http://dx.doi.org/10.1016/0040-4020(96)00942-810.1016/0040-4020(96)00942-8Suche in Google Scholar

[11] Hanabusa, K., Maesaka, Y., Kimura, M., & Shirai, H. (1999). New gelators based on 2-amino-2-phenylethanol: Close gelatorchiral structure relationship. Tetrahedron Letters, 40, 2385–2388. DOI: 10.1016/s0040-4039(99)00195-1. http://dx.doi.org/10.1016/S0040-4039(99)00195-110.1016/S0040-4039(99)00195-1Suche in Google Scholar

[12] Heiss, C., Anderson, J., & Phillips, R. S. (2003). Differential effects of bromination on substrates and inhibitors of kynureninase from Pseudomonas fluorescens. Organic & Biomolecular Chemistry, 1, 288–295. DOI: 10.1039/b208910f. http://dx.doi.org/10.1039/b208910f10.1039/b208910fSuche in Google Scholar

[13] Jakubec, P., Berkeš, D., Šiška, R., Gardianová, M., & Považanec, F. (2006a). Crystallisation induced asymmetric transformation (CIAT) in the synthesis of furoylalanines and furylcarbinols. Tetrahedron: Asymmetry, 17, 1629–1637. DOI: 10.1016/j.tetasy.2006.04.024. http://dx.doi.org/10.1016/j.tetasy.2006.04.02410.1016/j.tetasy.2006.04.024Suche in Google Scholar

[14] Jakubec, P., Berkeš, D., Kolarovič, A., & Považanec, F. (2006b). Asymmetric synthesis of aliphatic α-amino and γ-hydroxy-α-amino acids and introduction of a template for crystallization-induced asymmetric transformation. Synthesis, 2006, 4032–4040. DOI: 10.1055/s-2006-950319. http://dx.doi.org/10.1055/s-2006-95031910.1055/s-2006-950319Suche in Google Scholar

[15] Jakubec, P., Petráš, P., Ďuriš, A., & Berkeš, D. (2010). The first example of a crystallization-induced asymmetric transformation (CIAT) in the Mannich reaction. Tetrahedron: Asymmetry, 21, 69–74. DOI: 10.1016/j.tetasy.2009.12.014. http://dx.doi.org/10.1016/j.tetasy.2009.12.01410.1016/j.tetasy.2009.12.014Suche in Google Scholar

[16] Jousseaume, T., Wurz, N. E., & Glorius, F. (2011). Highly enantioselective synthesis of α-amino acid derivatives by an NHC-catalyzed intermolecular Stetter reaction. Angewandte Chemie International Edition, 50, 1410–1414. DOI: 10.1002/anie.201006548. http://dx.doi.org/10.1002/anie.20100654810.1002/anie.201006548Suche in Google Scholar

[17] Jursic, B. S., Upadhyay, S. K., Creech, C. C., & Neumann, D. M. (2010). Novel and efficient synthesis and antifungal evaluation of 2,3-functionalized cholestane and androstane derivatives. Bioorganic & Medicinal Chemistry Letters, 20, 7372–7375. DOI: 10.1016/j.bmcl.2010.10.044. http://dx.doi.org/10.1016/j.bmcl.2010.10.04410.1016/j.bmcl.2010.10.044Suche in Google Scholar

[18] Kolarovic, A., Berkeš, D., Baran, P., & Povazanec, F. (2001). Crystallization-induced dynamic resolution (CIDR) and its application to the synthesis of unnatural N-substituted amino acids derived from aroylacrylic acids. Tetrahedron Letters, 42, 2579–2582. DOI: 10.1016/s0040-4039(01)00221-0. http://dx.doi.org/10.1016/S0040-4039(01)00221-010.1016/S0040-4039(01)00221-0Suche in Google Scholar

[19] Lin, W., He, Z., Zhang, H., Zhang, X., Mi, A., & Jiang, Y. (2001). Amino acid anhydride hydrochlorides as acylating agents in Friedel-Crafts reaction: A practical synthesis of l-homophenylalanine. Synthesis, 2001, 1007–1009. DOI: 10.1055/s-2001-14563. http://dx.doi.org/10.1055/s-2001-1456310.1055/s-2001-14563Suche in Google Scholar

[20] McKennon, M. J., Meyers, A. I., Drauz, K., & Schwarm, M. (1993). A convenient reduction of amino acids and their derivatives. The Journal of Organic Chemistry, 58, 3568–3571. DOI: 10.1021/jo00065a020. http://dx.doi.org/10.1021/jo00065a02010.1021/jo00065a020Suche in Google Scholar

[21] Mokhallalati, M. K., & Pridgen, L. N. (1993). Lead tetraacetate cleavage of chiral phenylglycinol derived secondary amines without racemization. Synthetic Communications, 23, 2055–2064. DOI: 10.1080/00397919308009866. http://dx.doi.org/10.1080/0039791930800986610.1080/00397919308009866Suche in Google Scholar

[22] Myint, A. M., Schwarz, M. J., & Müller, N. (2012). The role of the kynurenine metabolism in major depression. Journal of Neural Transmission, 119, 245–251. DOI: 10.1007/s00702-011-0741-3. http://dx.doi.org/10.1007/s00702-011-0741-310.1007/s00702-011-0741-3Suche in Google Scholar

[23] Nakamura, Y., Matsubara, R., Kiyohara, H., & Kobayashi, S. (2003). Catalytic, asymmetric Mannich-type reactions of α-imino esters bearing readily removable substituents on nitrogen. Organic Letters, 5, 2481–2484. DOI: 10.1021/ol034717d. http://dx.doi.org/10.1021/ol034717d10.1021/ol034717dSuche in Google Scholar

[24] Natalini, B., Mattoli, L., Pellicciari, R., Carpenedo, R., Chiarugi, A., & Moroni, F. (1995). Synthesis and activity of enantiopure (S)-(m-nitrobenzoyl) alanine, potent kynurenine-3-hydroxylase inhibitor. Bioorganic & Medicinal Chemistry Letters, 5, 1451–1454. DOI: 10.1016/0960-894x(95)00255-r. http://dx.doi.org/10.1016/0960-894X(95)00255-R10.1016/0960-894X(95)00255-RSuche in Google Scholar

[25] Numazawa, M., Shelangouski, M., & Nakakoshi, M. (2001). Production of 16β-(acetoxy)acetoxy derivatives by reaction of 17-keto steroid enol acetates with lead(IV) acetate. Steroids, 66, 743–748. DOI: 10.1016/s0039-128x(01)00103-9. http://dx.doi.org/10.1016/S0039-128X(01)00103-910.1016/S0039-128X(01)00103-9Suche in Google Scholar

[26] Pellicciari, R., Natalini, B., Costantino, G., Mahmoud, M. R., Mattoli, L., Sadeghpour, B. M., Moroni, F., Chiarugi, A., & Carpenedo, R. (1994). Modulation of the kynurenine pathway in search for new neuroprotective agents. Synthesis and preliminary evaluation of (m-nitrobenzoyl)alanine, a potent inhibitor of kynurenine-3-hydroxylase. Journal of Medicinal Chemistry, 37, 647–655. DOI: 10.1021/jm00031a015. http://dx.doi.org/10.1021/jm00031a01510.1021/jm00031a015Suche in Google Scholar PubMed

[27] Pellicciari, R., Rizzo, R. C., Costantino, G., Marinozzi, M., Amori, L., Guidetti, P., Wu, H. Q., & Schwarcz, R. (2006). Modulators of the kynurenine pathway of tryptophan metabolism: Synthesis and preliminary biological evaluation of (S)-4-(ethylsulfonyl)benzoylalanine, a potent and selective kynurenine aminotransferase II (KAT II) inhibitor. ChemMedChem, 1, 528–531. DOI: 10.1002/cmdc.200500095. http://dx.doi.org/10.1002/cmdc.20050009510.1002/cmdc.200500095Suche in Google Scholar PubMed

[28] Pellicciari, R., Venturoni, F., Bellocchi, D., Carotti, A., Marinozzi, M., Macchiarulo, A., Amori, L., & Schwarcz, R. (2008). Sequence variants in kynurenine aminotransferase II (KAT II) orthologs determine different potencies of the inhibitor S-ESBA. ChemMedChem, 3, 1199–1202. DOI: 10.1002/cmdc.200800109. http://dx.doi.org/10.1002/cmdc.20080010910.1002/cmdc.200800109Suche in Google Scholar PubMed

[29] Sakai, K., Sakurai, R., & Hirayama, N. (2004). Chiral discrimination controlled by the solvent dielectric constant. Tetrahedron: Asymmetry, 15, 1073–1076. DOI: 10.1016/j.tetasy.2004.02.015. http://dx.doi.org/10.1016/j.tetasy.2004.02.01510.1016/j.tetasy.2004.02.015Suche in Google Scholar

[30] Stalker, R. A., Munsch, T. E., Tran, J. D., Nie, X., Warmuth, R., Beatty, A., & Aakeröy, C. B. (2002). Asymmetric synthesis of two new conformationally constrained lysine derivatives. Tetrahedron, 58, 4837–4849. DOI: 10.1016/s00404020(02)00450-7. http://dx.doi.org/10.1016/S0040-4020(02)00450-7Suche in Google Scholar

[31] Stone, T. W., Forrest, C. M., & Darlington, L. G. (2012). Kynurenine pathway inhibition as a therapeutic strategy for neuroprotection. FEBS Journal, 279, 1386–1397. DOI: 10.1111/j.1742-4658.2012.08487.x. http://dx.doi.org/10.1111/j.1742-4658.2012.08487.x10.1111/j.1742-4658.2012.08487.xSuche in Google Scholar PubMed

[32] Upreti, M., Pant, S., Dandia, A., & Pant, U. C. (1996). Synthesis of 8-substituted-2-carboxy-4-(4-fluorophenyl)-2,3-dihydro-1,5-benzothiazepines. Phosphorus, Sulfur, and Silicon and the Related Elements, 113, 165–171. DOI: 10.1080/10426509608046387. http://dx.doi.org/10.1080/1042650960804638710.1080/10426509608046387Suche in Google Scholar

[33] Varasi, M., Giordani, A., Speciale, C., Cini, M., & Bianchetti, A. (1999). US Patent No. 5,973,006. Washington, DC, USA: U.S. Patent and Trademark Office. Suche in Google Scholar

[34] Warmuth, R., Munsch, T. E., Stalker, R. A., Li, B., & Beatty, A. (2001). Enantioselective synthesis of benzocyclic α,α-dialkylamino acids: new insight into the solvent dependent stereoselectivity of the TMSCN addition to phenylglycinol derived imines. Tetrahedron, 57, 6383–6397. DOI: 10.1016/s0040-4020(01)00505-1. http://dx.doi.org/10.1016/S0040-4020(01)00505-110.1016/S0040-4020(01)00505-1Suche in Google Scholar

[35] Yamada, M., Nagashima, N., Hasegawa, J., & Takahashi, S. (1998). A highly efficient asymmetric synthesis of methoxyhomophenylalanine using Michael addition of phenethylamine. Tetrahedron Letters, 39, 9019–9022. DOI: 10.1016/s0040-4039(98)02023-1. http://dx.doi.org/10.1016/S0040-4039(98)02023-110.1016/S0040-4039(98)02023-1Suche in Google Scholar

[36] Yoshioka, R. (2007). Racemization, optical resolution and crystallization-induced asymmetric transformation of amino acids and pharmaceutical intermediates. Novel Optical Resolution Technologies, Topics in Current Chemistry, 269, 83–132. DOI: 10.1007/1282006094. http://dx.doi.org/10.1007/128_2006_094Suche in Google Scholar

[37] Zwilling, D., Huang, S. Y., Sathyasaikumar, K. V., Notarangelo, F. M., Guidetti, P., Wu, H. Q., Lee, J., Truong, J., Andrews-Zwilling, Y., Hsieh, E. W., Louie, J. Y., Wu, T., Screarcie-Levie, K., Patrick, C., Adame, A., Giorgini, F., Moussaoui, S., Laue, G., Rassoulpour, A., Flik, G., Huang, Y., Muchowski, J. M., Masliah, E., Schwarcz, R., & Muchowski, P. J. (2011). Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration. Cell, 145, 863–874. DOI: 10.1016/j.cell.2011.05.020. http://dx.doi.org/10.1016/j.cell.2011.05.02010.1016/j.cell.2011.05.020Suche in Google Scholar PubMed PubMed Central

Published Online: 2012-9-20
Published in Print: 2013-1-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Professor Dr. Štefan Toma—excellent scientist and teacher—celebrates his 75th birthday
  2. Palladium-catalysed Claisen rearrangement of 6-allyloxypurines
  3. Applicability of photochemically generated pendant benzoyl peroxides in both “grafting from” and “grafting to” techniques
  4. Spectral characterisation of new organic fluorescent dyes with an alkoxysilane moiety and their utilisation for the labelling of layered silicates
  5. Substituted homoallenyl aldehydes and their derivatives. Part 1: Homoallenyl aldehydes and protected hydrazones
  6. Substituted homoallenyl aldehydes and their derivatives. Part 2: Azines
  7. Methyltrioxorhenium-catalysed oxidation of secondary amines to nitrones in ionic liquids
  8. Thiophenium-ylides: Synthesis and reactivity
  9. Aminohydroxylation of divinylcarbinol and its application to the synthesis of bicyclic hydroxypyrrolidine and aminotetrahydrofuran building blocks
  10. Novel quercetin derivatives: synthesis and screening for anti-oxidant activity and aldose reductase inhibition
  11. Total synthesis of N,O,O,O-tetraacetyl-d-ribo-phytosphingosine and its 2-epi-congener
  12. A concise synthesis of enantiomerically pure aroyl-l-alanines and dihydroaroyl-l-alanines
  13. Synthesis and properties of macrocyclic diazene switch with binaphthalene unit attached via acrylamide linkers
  14. Conjugated push-pull salts derived from linear benzobisthiazole: preparation and optical properties
  15. Effect of reactants’ concentration on the ratio and yield of E,Z isomers of isatin-3-(4-phenyl)semicarbazone and N-methylisatin-3-(4-phenyl)semicarbazone
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0246-z/html?lang=de
Button zum nach oben scrollen