Home Palladium-catalysed Claisen rearrangement of 6-allyloxypurines
Article
Licensed
Unlicensed Requires Authentication

Palladium-catalysed Claisen rearrangement of 6-allyloxypurines

  • Petr Koukal EMAIL logo , Hana Dvořáková , Dalimil Dvořák and Tomáš Tobrman
Published/Copyright: September 20, 2012
Become an author with De Gruyter Brill

Abstract

6-Allyloxypurines readily undergo palladium-catalysed Claisen rearrangement under mild conditions affording N 1-substituted hypoxanthines. In contrast with the previously reported protocol, the Claisen rearrangement can be performed using Pd(PPh3)4 or Pd(dba)2/dppf in dry THF at 60°C. The reaction can accommodate variously substituted allyl fragments to position N 1 of the hypoxanthine skeleton with high yields. Retention of the double bond configuration during rearrangement was observed.

[1] Castro, A. M. M. (2004). Claisen rearrangement over the past nine decades. Chemical Reviews, 104, 2939–3002. DOI: 10.1021/cr020703u. http://dx.doi.org/10.1021/cr020703u10.1021/cr020703uSearch in Google Scholar PubMed

[2] De Clercq, E., & Neyts, J. (2004). Therapeutic potential of nucleoside/nucleotide analogues against poxvirus infections. Reviews in Medical Virology, 14, 289–300. DOI: 10.1002/rmv.439. http://dx.doi.org/10.1002/rmv.43910.1002/rmv.439Search in Google Scholar PubMed

[3] Kimura, K., & Bugg, T. D. H. (2003). Recent advances in antimicrobial nucleoside antibiotics targeting cell wall biosynthesis. Natural Product Reports, 20, 252–273. DOI: 10.1039/b202149h. http://dx.doi.org/10.1039/b202149h10.1039/b202149hSearch in Google Scholar PubMed

[4] Kotek, V., Chudíková, N., Tobrman, T., & Dvořák, D. (2010). Selective synthesis of 7-substituted purines via 7,8-dihydropurines. Organic Letters, 12, 5724–5727. DOI: 10.1021/ol1025525. http://dx.doi.org/10.1021/ol102552510.1021/ol1025525Search in Google Scholar PubMed

[5] Kotek, V., Tobrman, T., & Dvořák, D. (2012). Highly efficient and broad-scope protocol for the preparation of 7-substituted 6-halopurines via N9-Boc-protected 7,8-dihydropurines Synthesis, 2012, 610–618. DOI: 10.1055/s-0031-1290068. 10.1055/s-0031-1290068Search in Google Scholar

[6] Lagoja, I. M. (2005). Pyrimidine as constituent of natural biologically active compounds. Chemistry & Biodiversity, 2, 1–50. DOI: 10.1002/cbdv.200490173. http://dx.doi.org/10.1002/cbdv.20049017310.1002/cbdv.200490173Search in Google Scholar PubMed

[7] Mitchell, S. S., Whitehill, A. B., Trapido-Rosenthal, H. G., & Ireland, C. M. (1997). Isolation and characterization of 1,3-dimethylisoguanine from the Bermudian sponge Amphimedon viridis. Journal of Natural Products, 60, 727–728. DOI: 10.1021/np970015j. http://dx.doi.org/10.1021/np970015j10.1021/np970015jSearch in Google Scholar PubMed

[8] Miura, S., & Izuta, S. (2004). DNA polymerases as targets of anticancer nucleosides. Current Drug Targets, 5, 191–195. DOI: 10.2174/1389450043490578. http://dx.doi.org/10.2174/138945004349057810.2174/1389450043490578Search in Google Scholar PubMed

[9] Petrović, M., B., Simonović, A. T., Radovanović, M. B., Milić, S. M., & Antonijević, M. M. (2012). Influence of purine on copper behavior in neutral and alkaline sulfate solutions. Chemical Papers, 66, 664–676. DOI: 10.2478/s11696-012-0174-y. http://dx.doi.org/10.2478/s11696-012-0174-y10.2478/s11696-012-0174-ySearch in Google Scholar

[10] Phelps, K., Morris, A., & Beal, P. A. (2012). Novel modifi-cations in RNA. ACS Chemical Biology, 7, 100–109. DOI: 10.1021/cb200422t. http://dx.doi.org/10.1021/cb200422t10.1021/cb200422tSearch in Google Scholar PubMed PubMed Central

[11] Rachakonda, S., & Cartee, L. (2004). Challenges in antimicrobial drug discovery and the potential of nucleoside antibiotics. Current Medicinal Chemistry, 11, 775–793. DOI: 10.2174/0929867043455774. http://dx.doi.org/10.2174/092986704345577410.2174/0929867043455774Search in Google Scholar

[12] Ranganathan, D., Rathi, R., Keshavan, K., & Pal Singh, W. (1986). The demonstration of normal O→N Claisen rearrangement in purines. Tetrahedron, 42, 4873–4878. DOI: 10.1016/s0040-4020(01)82069-x. http://dx.doi.org/10.1016/S0040-4020(01)82069-X10.1016/S0040-4020(01)82069-XSearch in Google Scholar

[13] Schenck, T. G., & Bosnich B. (1985). Homegeneous catalysis. Transition-metal-catalyzed Claisen rearrangements. Journal of the American Chemical Society, 107, 2058–2066. DOI: 10.1021/ja00293a041. 10.1021/ja00293a041Search in Google Scholar

[14] Simons, C., Wu, Q., & Htar, T. T. (2005). Recent advances in antiviral nucleoside and nucleotide therapeutics. Current Topics in Medicinal Chemistry, 5, 1191–1203. http://dx.doi.org/10.2174/15680260577446305110.2174/156802605774463051Search in Google Scholar PubMed

[15] Szafraniec, S. I., Stachnik, K. J., & Skierski, J. S. (2004). New nucleoside analogs in the treatment of hematological disorders. Acta Poloniae Pharmaceutica — Drug Research, 61, 223–232. Search in Google Scholar

[16] Tobrman, T., & Dvořák, D. (2003). 6-Magnesiated purines: Preparation and reaction with aldehydes. Organic Letters, 5, 4289–4291. DOI: 10.1021/ol0355027. http://dx.doi.org/10.1021/ol035502710.1021/ol0355027Search in Google Scholar PubMed

[17] Tobrman, T., & Dvořák, D. (2008). Heck reactions of 6- and 2-halopurines. European Journal of Organic Chemistry, 2008, 2923–2928. DOI: 10.1002/ejoc.200800091. http://dx.doi.org/10.1002/ejoc.20080009110.1002/ejoc.200800091Search in Google Scholar

[18] Vik, A., & Gundersen, L. L. (2007). Synthetic studies directed towards asmarines; construction of the tetrahydrodiazepinopurine moiety by ring closing metathesis. Tetrahedron Letters, 48, 1931–1934. DOI: 10.1016/j.tetlet.2007.01.090. http://dx.doi.org/10.1016/j.tetlet.2007.01.09010.1016/j.tetlet.2007.01.090Search in Google Scholar

[19] Wieland, T., & Bauer, L. (1951). Weitere Versuche zur Stofftrennung durch Papierchromatographie und Ionophroese. Purine und Aminosäuren. Angewandte Chemie, 63, 511–513. DOI: 10.1002/ange.19510632104. http://dx.doi.org/10.1002/ange.1951063210410.1002/ange.19510632104Search in Google Scholar

[20] Yagi, H., Matsunaga, S., & Fusetani, N. (1994). Isolation of 1-methylherbipoline, a purine base, from a marine sponge, Jaspis sp. Journal of Natural Products, 57, 837–838. DOI: 10.1021/np50108a025. http://dx.doi.org/10.1021/np50108a02510.1021/np50108a025Search in Google Scholar

[21] Yamada, T., Peng, C. G., Matsuda, S., Addepalli, H., Jayaprakash, K. N., Alam, M. R., Mills, K., Maier, M. A., Charisse, K., Sekine, M., Manoharan, M., & Rajeev, K. G. (2011). Versatile site-specific conjugation of small molecules to siRNA using click chemistry. The Journal of Organic Chemistry, 76, 1198–1211. DOI: 10.1021/jo101761g. http://dx.doi.org/10.1021/jo101761g10.1021/jo101761gSearch in Google Scholar PubMed

Published Online: 2012-9-20
Published in Print: 2013-1-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Professor Dr. Štefan Toma—excellent scientist and teacher—celebrates his 75th birthday
  2. Palladium-catalysed Claisen rearrangement of 6-allyloxypurines
  3. Applicability of photochemically generated pendant benzoyl peroxides in both “grafting from” and “grafting to” techniques
  4. Spectral characterisation of new organic fluorescent dyes with an alkoxysilane moiety and their utilisation for the labelling of layered silicates
  5. Substituted homoallenyl aldehydes and their derivatives. Part 1: Homoallenyl aldehydes and protected hydrazones
  6. Substituted homoallenyl aldehydes and their derivatives. Part 2: Azines
  7. Methyltrioxorhenium-catalysed oxidation of secondary amines to nitrones in ionic liquids
  8. Thiophenium-ylides: Synthesis and reactivity
  9. Aminohydroxylation of divinylcarbinol and its application to the synthesis of bicyclic hydroxypyrrolidine and aminotetrahydrofuran building blocks
  10. Novel quercetin derivatives: synthesis and screening for anti-oxidant activity and aldose reductase inhibition
  11. Total synthesis of N,O,O,O-tetraacetyl-d-ribo-phytosphingosine and its 2-epi-congener
  12. A concise synthesis of enantiomerically pure aroyl-l-alanines and dihydroaroyl-l-alanines
  13. Synthesis and properties of macrocyclic diazene switch with binaphthalene unit attached via acrylamide linkers
  14. Conjugated push-pull salts derived from linear benzobisthiazole: preparation and optical properties
  15. Effect of reactants’ concentration on the ratio and yield of E,Z isomers of isatin-3-(4-phenyl)semicarbazone and N-methylisatin-3-(4-phenyl)semicarbazone
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0239-y/html
Scroll to top button