Abstract
6-Allyloxypurines readily undergo palladium-catalysed Claisen rearrangement under mild conditions affording N 1-substituted hypoxanthines. In contrast with the previously reported protocol, the Claisen rearrangement can be performed using Pd(PPh3)4 or Pd(dba)2/dppf in dry THF at 60°C. The reaction can accommodate variously substituted allyl fragments to position N 1 of the hypoxanthine skeleton with high yields. Retention of the double bond configuration during rearrangement was observed.
[1] Castro, A. M. M. (2004). Claisen rearrangement over the past nine decades. Chemical Reviews, 104, 2939–3002. DOI: 10.1021/cr020703u. http://dx.doi.org/10.1021/cr020703u10.1021/cr020703uSearch in Google Scholar PubMed
[2] De Clercq, E., & Neyts, J. (2004). Therapeutic potential of nucleoside/nucleotide analogues against poxvirus infections. Reviews in Medical Virology, 14, 289–300. DOI: 10.1002/rmv.439. http://dx.doi.org/10.1002/rmv.43910.1002/rmv.439Search in Google Scholar PubMed
[3] Kimura, K., & Bugg, T. D. H. (2003). Recent advances in antimicrobial nucleoside antibiotics targeting cell wall biosynthesis. Natural Product Reports, 20, 252–273. DOI: 10.1039/b202149h. http://dx.doi.org/10.1039/b202149h10.1039/b202149hSearch in Google Scholar PubMed
[4] Kotek, V., Chudíková, N., Tobrman, T., & Dvořák, D. (2010). Selective synthesis of 7-substituted purines via 7,8-dihydropurines. Organic Letters, 12, 5724–5727. DOI: 10.1021/ol1025525. http://dx.doi.org/10.1021/ol102552510.1021/ol1025525Search in Google Scholar PubMed
[5] Kotek, V., Tobrman, T., & Dvořák, D. (2012). Highly efficient and broad-scope protocol for the preparation of 7-substituted 6-halopurines via N9-Boc-protected 7,8-dihydropurines Synthesis, 2012, 610–618. DOI: 10.1055/s-0031-1290068. 10.1055/s-0031-1290068Search in Google Scholar
[6] Lagoja, I. M. (2005). Pyrimidine as constituent of natural biologically active compounds. Chemistry & Biodiversity, 2, 1–50. DOI: 10.1002/cbdv.200490173. http://dx.doi.org/10.1002/cbdv.20049017310.1002/cbdv.200490173Search in Google Scholar PubMed
[7] Mitchell, S. S., Whitehill, A. B., Trapido-Rosenthal, H. G., & Ireland, C. M. (1997). Isolation and characterization of 1,3-dimethylisoguanine from the Bermudian sponge Amphimedon viridis. Journal of Natural Products, 60, 727–728. DOI: 10.1021/np970015j. http://dx.doi.org/10.1021/np970015j10.1021/np970015jSearch in Google Scholar PubMed
[8] Miura, S., & Izuta, S. (2004). DNA polymerases as targets of anticancer nucleosides. Current Drug Targets, 5, 191–195. DOI: 10.2174/1389450043490578. http://dx.doi.org/10.2174/138945004349057810.2174/1389450043490578Search in Google Scholar PubMed
[9] Petrović, M., B., Simonović, A. T., Radovanović, M. B., Milić, S. M., & Antonijević, M. M. (2012). Influence of purine on copper behavior in neutral and alkaline sulfate solutions. Chemical Papers, 66, 664–676. DOI: 10.2478/s11696-012-0174-y. http://dx.doi.org/10.2478/s11696-012-0174-y10.2478/s11696-012-0174-ySearch in Google Scholar
[10] Phelps, K., Morris, A., & Beal, P. A. (2012). Novel modifi-cations in RNA. ACS Chemical Biology, 7, 100–109. DOI: 10.1021/cb200422t. http://dx.doi.org/10.1021/cb200422t10.1021/cb200422tSearch in Google Scholar PubMed PubMed Central
[11] Rachakonda, S., & Cartee, L. (2004). Challenges in antimicrobial drug discovery and the potential of nucleoside antibiotics. Current Medicinal Chemistry, 11, 775–793. DOI: 10.2174/0929867043455774. http://dx.doi.org/10.2174/092986704345577410.2174/0929867043455774Search in Google Scholar
[12] Ranganathan, D., Rathi, R., Keshavan, K., & Pal Singh, W. (1986). The demonstration of normal O→N Claisen rearrangement in purines. Tetrahedron, 42, 4873–4878. DOI: 10.1016/s0040-4020(01)82069-x. http://dx.doi.org/10.1016/S0040-4020(01)82069-X10.1016/S0040-4020(01)82069-XSearch in Google Scholar
[13] Schenck, T. G., & Bosnich B. (1985). Homegeneous catalysis. Transition-metal-catalyzed Claisen rearrangements. Journal of the American Chemical Society, 107, 2058–2066. DOI: 10.1021/ja00293a041. 10.1021/ja00293a041Search in Google Scholar
[14] Simons, C., Wu, Q., & Htar, T. T. (2005). Recent advances in antiviral nucleoside and nucleotide therapeutics. Current Topics in Medicinal Chemistry, 5, 1191–1203. http://dx.doi.org/10.2174/15680260577446305110.2174/156802605774463051Search in Google Scholar PubMed
[15] Szafraniec, S. I., Stachnik, K. J., & Skierski, J. S. (2004). New nucleoside analogs in the treatment of hematological disorders. Acta Poloniae Pharmaceutica — Drug Research, 61, 223–232. Search in Google Scholar
[16] Tobrman, T., & Dvořák, D. (2003). 6-Magnesiated purines: Preparation and reaction with aldehydes. Organic Letters, 5, 4289–4291. DOI: 10.1021/ol0355027. http://dx.doi.org/10.1021/ol035502710.1021/ol0355027Search in Google Scholar PubMed
[17] Tobrman, T., & Dvořák, D. (2008). Heck reactions of 6- and 2-halopurines. European Journal of Organic Chemistry, 2008, 2923–2928. DOI: 10.1002/ejoc.200800091. http://dx.doi.org/10.1002/ejoc.20080009110.1002/ejoc.200800091Search in Google Scholar
[18] Vik, A., & Gundersen, L. L. (2007). Synthetic studies directed towards asmarines; construction of the tetrahydrodiazepinopurine moiety by ring closing metathesis. Tetrahedron Letters, 48, 1931–1934. DOI: 10.1016/j.tetlet.2007.01.090. http://dx.doi.org/10.1016/j.tetlet.2007.01.09010.1016/j.tetlet.2007.01.090Search in Google Scholar
[19] Wieland, T., & Bauer, L. (1951). Weitere Versuche zur Stofftrennung durch Papierchromatographie und Ionophroese. Purine und Aminosäuren. Angewandte Chemie, 63, 511–513. DOI: 10.1002/ange.19510632104. http://dx.doi.org/10.1002/ange.1951063210410.1002/ange.19510632104Search in Google Scholar
[20] Yagi, H., Matsunaga, S., & Fusetani, N. (1994). Isolation of 1-methylherbipoline, a purine base, from a marine sponge, Jaspis sp. Journal of Natural Products, 57, 837–838. DOI: 10.1021/np50108a025. http://dx.doi.org/10.1021/np50108a02510.1021/np50108a025Search in Google Scholar
[21] Yamada, T., Peng, C. G., Matsuda, S., Addepalli, H., Jayaprakash, K. N., Alam, M. R., Mills, K., Maier, M. A., Charisse, K., Sekine, M., Manoharan, M., & Rajeev, K. G. (2011). Versatile site-specific conjugation of small molecules to siRNA using click chemistry. The Journal of Organic Chemistry, 76, 1198–1211. DOI: 10.1021/jo101761g. http://dx.doi.org/10.1021/jo101761g10.1021/jo101761gSearch in Google Scholar PubMed
© 2012 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Professor Dr. Štefan Toma—excellent scientist and teacher—celebrates his 75th birthday
- Palladium-catalysed Claisen rearrangement of 6-allyloxypurines
- Applicability of photochemically generated pendant benzoyl peroxides in both “grafting from” and “grafting to” techniques
- Spectral characterisation of new organic fluorescent dyes with an alkoxysilane moiety and their utilisation for the labelling of layered silicates
- Substituted homoallenyl aldehydes and their derivatives. Part 1: Homoallenyl aldehydes and protected hydrazones
- Substituted homoallenyl aldehydes and their derivatives. Part 2: Azines
- Methyltrioxorhenium-catalysed oxidation of secondary amines to nitrones in ionic liquids
- Thiophenium-ylides: Synthesis and reactivity
- Aminohydroxylation of divinylcarbinol and its application to the synthesis of bicyclic hydroxypyrrolidine and aminotetrahydrofuran building blocks
- Novel quercetin derivatives: synthesis and screening for anti-oxidant activity and aldose reductase inhibition
- Total synthesis of N,O,O,O-tetraacetyl-d-ribo-phytosphingosine and its 2-epi-congener
- A concise synthesis of enantiomerically pure aroyl-l-alanines and dihydroaroyl-l-alanines
- Synthesis and properties of macrocyclic diazene switch with binaphthalene unit attached via acrylamide linkers
- Conjugated push-pull salts derived from linear benzobisthiazole: preparation and optical properties
- Effect of reactants’ concentration on the ratio and yield of E,Z isomers of isatin-3-(4-phenyl)semicarbazone and N-methylisatin-3-(4-phenyl)semicarbazone
Articles in the same Issue
- Professor Dr. Štefan Toma—excellent scientist and teacher—celebrates his 75th birthday
- Palladium-catalysed Claisen rearrangement of 6-allyloxypurines
- Applicability of photochemically generated pendant benzoyl peroxides in both “grafting from” and “grafting to” techniques
- Spectral characterisation of new organic fluorescent dyes with an alkoxysilane moiety and their utilisation for the labelling of layered silicates
- Substituted homoallenyl aldehydes and their derivatives. Part 1: Homoallenyl aldehydes and protected hydrazones
- Substituted homoallenyl aldehydes and their derivatives. Part 2: Azines
- Methyltrioxorhenium-catalysed oxidation of secondary amines to nitrones in ionic liquids
- Thiophenium-ylides: Synthesis and reactivity
- Aminohydroxylation of divinylcarbinol and its application to the synthesis of bicyclic hydroxypyrrolidine and aminotetrahydrofuran building blocks
- Novel quercetin derivatives: synthesis and screening for anti-oxidant activity and aldose reductase inhibition
- Total synthesis of N,O,O,O-tetraacetyl-d-ribo-phytosphingosine and its 2-epi-congener
- A concise synthesis of enantiomerically pure aroyl-l-alanines and dihydroaroyl-l-alanines
- Synthesis and properties of macrocyclic diazene switch with binaphthalene unit attached via acrylamide linkers
- Conjugated push-pull salts derived from linear benzobisthiazole: preparation and optical properties
- Effect of reactants’ concentration on the ratio and yield of E,Z isomers of isatin-3-(4-phenyl)semicarbazone and N-methylisatin-3-(4-phenyl)semicarbazone