Abstract
Straightforward preparation of enantiomerically highly enriched N-substituted aroylalanines has been developed. This process involves the combination of crystallization-induced asymmetric transformation and a conjugate addition of N-nucleophiles to the corresponding aroylacrylic acids. Further transformations to 3,4-dichlorobenzoylalanine and aroyl-l-alanines via periodate oxidation and stereoselective reduction to N-substituted syn-4-aryl-4-hydroxy-2-aminobutanoic acids are also described.
[1] Anderson, N. G. (2005). Developing processes for crystallization-induced asymmetric transformation. Organic Process Research & Development, 9, 800–813. DOI: 10.1021/op050119y. http://dx.doi.org/10.1021/op050119y10.1021/op050119ySearch in Google Scholar
[2] Awasthi, A. K., Boys, M. L., Cain-Janicki, K. J., Colson, P. J., Doubleday, W. W., Duran, J. E., & Farid, P. N. (2005). Practical enantioselective synthesis of β-substituted-β-amino esters. The Journal of Organic Chemistry, 70, 5387–5397. DOI: 10.1021/jo050177h. http://dx.doi.org/10.1021/jo050177h10.1021/jo050177hSearch in Google Scholar
[3] Barfoot, C. W., Harvey, J. E., Kenworthy, M. N., Kilburn, J. P., Ahmed, M., & Taylor, R. J. K. (2005). Highly functionalised organolithium and organoboron reagents for the preparation of enantiomerically pure α-amino acids. Tetrahedron, 61, 3403–3417. DOI: 10.1016/j.tet.2004.10.097. http://dx.doi.org/10.1016/j.tet.2004.10.09710.1016/j.tet.2004.10.097Search in Google Scholar
[4] Berkeš, D., Kolarovič, A., & Považanec, F. (2000). Stereoselective sodium borohydride reduction, catalyzed by manganese(II) chloride, of γ-oxo-α-amino acids. A practical approach to syn-γ-hydroxy-α-amino acids. Tetrahedron Letters, 41, 5257–5260. DOI: 10.1016/s0040-4039(00)00800-5. http://dx.doi.org/10.1016/S0040-4039(00)00800-510.1016/S0040-4039(00)00800-5Search in Google Scholar
[5] Berkeš, D., Kolarovič, A., Manduch, R., Baran, P., & Považanec, F. (2005). Crystallization-induced asymmetric transformations (CIAT): stereoconvergent acid-catalyzed lactonization of substituted 2-amino-4-aryl-4-hydroxybutanoic acids. Tetrahedron: Asymmetry, 16, 1927–1934. DOI: 10.1016/j.tetasy.2005.04.024. http://dx.doi.org/10.1016/j.tetasy.2005.04.02410.1016/j.tetasy.2005.04.024Search in Google Scholar
[6] Berkeš, D., Jakubec, P., Winklerová, D., Považanec, F., & Daich, A. (2007). CIAT with simultaneous epimerization at two stereocenters. Synthesis of substituted β-methyl-α-homophenylalanines. Organic & Biomolecular Chemistry, 5, 121–124. DOI: 10.1039/b613103d. http://dx.doi.org/10.1039/b613103d10.1039/B613103DSearch in Google Scholar
[7] Bianchi, M., Butti, A., Christidis, Y., Perronnet, J., Barzaghi, F., Cesana, R., & Nencioni, A. (1988). Gastric antisecretory, anti-ulcer and cytoprotective properties of substituted (E)-4-phenyl- and heteroaryl-4-oxo-2-butenoic acids. European Journal of Medicinal Chemistry, 23, 45–52. DOI: 10.1016/0223-5234(88)90166-3. http://dx.doi.org/10.1016/0223-5234(88)90166-310.1016/0223-5234(88)90166-3Search in Google Scholar
[8] Brands, K. M. J., & Davies, A. J. (2006). Crystallizationinduced diastereomer transformations. Chemical Reviews, 106, 2711–2733. DOI: 10.1021/cr0406864. http://dx.doi.org/10.1021/cr040686410.1021/cr0406864Search in Google Scholar
[9] Ferraris, D., Young, B., Cox, C., Dudding, T., Drury, W. J., III, Ryzhkov, L., Taggi, A. E., & Lectka, T. (2001). Catalytic, enantioselective alkylation of α-imino esters: The synthesis of nonnatural α-amino acid derivatives. Journal of the American Chemical Society, 124, 67–77. DOI: 10.1021/ja016838j. http://dx.doi.org/10.1021/ja016838j10.1021/ja016838jSearch in Google Scholar
[10] Golubev, A. S., Sewald, N., & Burger, K. (1996). Synthesis of γ-oxo α-amino acids from L-aspartic acid. Tetrahedron, 52, 14757–14776. DOI: 10.1016/0040-4020(96)00942-8. http://dx.doi.org/10.1016/0040-4020(96)00942-810.1016/0040-4020(96)00942-8Search in Google Scholar
[11] Hanabusa, K., Maesaka, Y., Kimura, M., & Shirai, H. (1999). New gelators based on 2-amino-2-phenylethanol: Close gelatorchiral structure relationship. Tetrahedron Letters, 40, 2385–2388. DOI: 10.1016/s0040-4039(99)00195-1. http://dx.doi.org/10.1016/S0040-4039(99)00195-110.1016/S0040-4039(99)00195-1Search in Google Scholar
[12] Heiss, C., Anderson, J., & Phillips, R. S. (2003). Differential effects of bromination on substrates and inhibitors of kynureninase from Pseudomonas fluorescens. Organic & Biomolecular Chemistry, 1, 288–295. DOI: 10.1039/b208910f. http://dx.doi.org/10.1039/b208910f10.1039/b208910fSearch in Google Scholar
[13] Jakubec, P., Berkeš, D., Šiška, R., Gardianová, M., & Považanec, F. (2006a). Crystallisation induced asymmetric transformation (CIAT) in the synthesis of furoylalanines and furylcarbinols. Tetrahedron: Asymmetry, 17, 1629–1637. DOI: 10.1016/j.tetasy.2006.04.024. http://dx.doi.org/10.1016/j.tetasy.2006.04.02410.1016/j.tetasy.2006.04.024Search in Google Scholar
[14] Jakubec, P., Berkeš, D., Kolarovič, A., & Považanec, F. (2006b). Asymmetric synthesis of aliphatic α-amino and γ-hydroxy-α-amino acids and introduction of a template for crystallization-induced asymmetric transformation. Synthesis, 2006, 4032–4040. DOI: 10.1055/s-2006-950319. http://dx.doi.org/10.1055/s-2006-95031910.1055/s-2006-950319Search in Google Scholar
[15] Jakubec, P., Petráš, P., Ďuriš, A., & Berkeš, D. (2010). The first example of a crystallization-induced asymmetric transformation (CIAT) in the Mannich reaction. Tetrahedron: Asymmetry, 21, 69–74. DOI: 10.1016/j.tetasy.2009.12.014. http://dx.doi.org/10.1016/j.tetasy.2009.12.01410.1016/j.tetasy.2009.12.014Search in Google Scholar
[16] Jousseaume, T., Wurz, N. E., & Glorius, F. (2011). Highly enantioselective synthesis of α-amino acid derivatives by an NHC-catalyzed intermolecular Stetter reaction. Angewandte Chemie International Edition, 50, 1410–1414. DOI: 10.1002/anie.201006548. http://dx.doi.org/10.1002/anie.20100654810.1002/anie.201006548Search in Google Scholar
[17] Jursic, B. S., Upadhyay, S. K., Creech, C. C., & Neumann, D. M. (2010). Novel and efficient synthesis and antifungal evaluation of 2,3-functionalized cholestane and androstane derivatives. Bioorganic & Medicinal Chemistry Letters, 20, 7372–7375. DOI: 10.1016/j.bmcl.2010.10.044. http://dx.doi.org/10.1016/j.bmcl.2010.10.04410.1016/j.bmcl.2010.10.044Search in Google Scholar
[18] Kolarovic, A., Berkeš, D., Baran, P., & Povazanec, F. (2001). Crystallization-induced dynamic resolution (CIDR) and its application to the synthesis of unnatural N-substituted amino acids derived from aroylacrylic acids. Tetrahedron Letters, 42, 2579–2582. DOI: 10.1016/s0040-4039(01)00221-0. http://dx.doi.org/10.1016/S0040-4039(01)00221-010.1016/S0040-4039(01)00221-0Search in Google Scholar
[19] Lin, W., He, Z., Zhang, H., Zhang, X., Mi, A., & Jiang, Y. (2001). Amino acid anhydride hydrochlorides as acylating agents in Friedel-Crafts reaction: A practical synthesis of l-homophenylalanine. Synthesis, 2001, 1007–1009. DOI: 10.1055/s-2001-14563. http://dx.doi.org/10.1055/s-2001-1456310.1055/s-2001-14563Search in Google Scholar
[20] McKennon, M. J., Meyers, A. I., Drauz, K., & Schwarm, M. (1993). A convenient reduction of amino acids and their derivatives. The Journal of Organic Chemistry, 58, 3568–3571. DOI: 10.1021/jo00065a020. http://dx.doi.org/10.1021/jo00065a02010.1021/jo00065a020Search in Google Scholar
[21] Mokhallalati, M. K., & Pridgen, L. N. (1993). Lead tetraacetate cleavage of chiral phenylglycinol derived secondary amines without racemization. Synthetic Communications, 23, 2055–2064. DOI: 10.1080/00397919308009866. http://dx.doi.org/10.1080/0039791930800986610.1080/00397919308009866Search in Google Scholar
[22] Myint, A. M., Schwarz, M. J., & Müller, N. (2012). The role of the kynurenine metabolism in major depression. Journal of Neural Transmission, 119, 245–251. DOI: 10.1007/s00702-011-0741-3. http://dx.doi.org/10.1007/s00702-011-0741-310.1007/s00702-011-0741-3Search in Google Scholar
[23] Nakamura, Y., Matsubara, R., Kiyohara, H., & Kobayashi, S. (2003). Catalytic, asymmetric Mannich-type reactions of α-imino esters bearing readily removable substituents on nitrogen. Organic Letters, 5, 2481–2484. DOI: 10.1021/ol034717d. http://dx.doi.org/10.1021/ol034717d10.1021/ol034717dSearch in Google Scholar
[24] Natalini, B., Mattoli, L., Pellicciari, R., Carpenedo, R., Chiarugi, A., & Moroni, F. (1995). Synthesis and activity of enantiopure (S)-(m-nitrobenzoyl) alanine, potent kynurenine-3-hydroxylase inhibitor. Bioorganic & Medicinal Chemistry Letters, 5, 1451–1454. DOI: 10.1016/0960-894x(95)00255-r. http://dx.doi.org/10.1016/0960-894X(95)00255-R10.1016/0960-894X(95)00255-RSearch in Google Scholar
[25] Numazawa, M., Shelangouski, M., & Nakakoshi, M. (2001). Production of 16β-(acetoxy)acetoxy derivatives by reaction of 17-keto steroid enol acetates with lead(IV) acetate. Steroids, 66, 743–748. DOI: 10.1016/s0039-128x(01)00103-9. http://dx.doi.org/10.1016/S0039-128X(01)00103-910.1016/S0039-128X(01)00103-9Search in Google Scholar
[26] Pellicciari, R., Natalini, B., Costantino, G., Mahmoud, M. R., Mattoli, L., Sadeghpour, B. M., Moroni, F., Chiarugi, A., & Carpenedo, R. (1994). Modulation of the kynurenine pathway in search for new neuroprotective agents. Synthesis and preliminary evaluation of (m-nitrobenzoyl)alanine, a potent inhibitor of kynurenine-3-hydroxylase. Journal of Medicinal Chemistry, 37, 647–655. DOI: 10.1021/jm00031a015. http://dx.doi.org/10.1021/jm00031a01510.1021/jm00031a015Search in Google Scholar PubMed
[27] Pellicciari, R., Rizzo, R. C., Costantino, G., Marinozzi, M., Amori, L., Guidetti, P., Wu, H. Q., & Schwarcz, R. (2006). Modulators of the kynurenine pathway of tryptophan metabolism: Synthesis and preliminary biological evaluation of (S)-4-(ethylsulfonyl)benzoylalanine, a potent and selective kynurenine aminotransferase II (KAT II) inhibitor. ChemMedChem, 1, 528–531. DOI: 10.1002/cmdc.200500095. http://dx.doi.org/10.1002/cmdc.20050009510.1002/cmdc.200500095Search in Google Scholar PubMed
[28] Pellicciari, R., Venturoni, F., Bellocchi, D., Carotti, A., Marinozzi, M., Macchiarulo, A., Amori, L., & Schwarcz, R. (2008). Sequence variants in kynurenine aminotransferase II (KAT II) orthologs determine different potencies of the inhibitor S-ESBA. ChemMedChem, 3, 1199–1202. DOI: 10.1002/cmdc.200800109. http://dx.doi.org/10.1002/cmdc.20080010910.1002/cmdc.200800109Search in Google Scholar PubMed
[29] Sakai, K., Sakurai, R., & Hirayama, N. (2004). Chiral discrimination controlled by the solvent dielectric constant. Tetrahedron: Asymmetry, 15, 1073–1076. DOI: 10.1016/j.tetasy.2004.02.015. http://dx.doi.org/10.1016/j.tetasy.2004.02.01510.1016/j.tetasy.2004.02.015Search in Google Scholar
[30] Stalker, R. A., Munsch, T. E., Tran, J. D., Nie, X., Warmuth, R., Beatty, A., & Aakeröy, C. B. (2002). Asymmetric synthesis of two new conformationally constrained lysine derivatives. Tetrahedron, 58, 4837–4849. DOI: 10.1016/s00404020(02)00450-7. http://dx.doi.org/10.1016/S0040-4020(02)00450-7Search in Google Scholar
[31] Stone, T. W., Forrest, C. M., & Darlington, L. G. (2012). Kynurenine pathway inhibition as a therapeutic strategy for neuroprotection. FEBS Journal, 279, 1386–1397. DOI: 10.1111/j.1742-4658.2012.08487.x. http://dx.doi.org/10.1111/j.1742-4658.2012.08487.x10.1111/j.1742-4658.2012.08487.xSearch in Google Scholar PubMed
[32] Upreti, M., Pant, S., Dandia, A., & Pant, U. C. (1996). Synthesis of 8-substituted-2-carboxy-4-(4-fluorophenyl)-2,3-dihydro-1,5-benzothiazepines. Phosphorus, Sulfur, and Silicon and the Related Elements, 113, 165–171. DOI: 10.1080/10426509608046387. http://dx.doi.org/10.1080/1042650960804638710.1080/10426509608046387Search in Google Scholar
[33] Varasi, M., Giordani, A., Speciale, C., Cini, M., & Bianchetti, A. (1999). US Patent No. 5,973,006. Washington, DC, USA: U.S. Patent and Trademark Office. Search in Google Scholar
[34] Warmuth, R., Munsch, T. E., Stalker, R. A., Li, B., & Beatty, A. (2001). Enantioselective synthesis of benzocyclic α,α-dialkylamino acids: new insight into the solvent dependent stereoselectivity of the TMSCN addition to phenylglycinol derived imines. Tetrahedron, 57, 6383–6397. DOI: 10.1016/s0040-4020(01)00505-1. http://dx.doi.org/10.1016/S0040-4020(01)00505-110.1016/S0040-4020(01)00505-1Search in Google Scholar
[35] Yamada, M., Nagashima, N., Hasegawa, J., & Takahashi, S. (1998). A highly efficient asymmetric synthesis of methoxyhomophenylalanine using Michael addition of phenethylamine. Tetrahedron Letters, 39, 9019–9022. DOI: 10.1016/s0040-4039(98)02023-1. http://dx.doi.org/10.1016/S0040-4039(98)02023-110.1016/S0040-4039(98)02023-1Search in Google Scholar
[36] Yoshioka, R. (2007). Racemization, optical resolution and crystallization-induced asymmetric transformation of amino acids and pharmaceutical intermediates. Novel Optical Resolution Technologies, Topics in Current Chemistry, 269, 83–132. DOI: 10.1007/1282006094. http://dx.doi.org/10.1007/128_2006_094Search in Google Scholar
[37] Zwilling, D., Huang, S. Y., Sathyasaikumar, K. V., Notarangelo, F. M., Guidetti, P., Wu, H. Q., Lee, J., Truong, J., Andrews-Zwilling, Y., Hsieh, E. W., Louie, J. Y., Wu, T., Screarcie-Levie, K., Patrick, C., Adame, A., Giorgini, F., Moussaoui, S., Laue, G., Rassoulpour, A., Flik, G., Huang, Y., Muchowski, J. M., Masliah, E., Schwarcz, R., & Muchowski, P. J. (2011). Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration. Cell, 145, 863–874. DOI: 10.1016/j.cell.2011.05.020. http://dx.doi.org/10.1016/j.cell.2011.05.02010.1016/j.cell.2011.05.020Search in Google Scholar PubMed PubMed Central
© 2012 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Professor Dr. Štefan Toma—excellent scientist and teacher—celebrates his 75th birthday
- Palladium-catalysed Claisen rearrangement of 6-allyloxypurines
- Applicability of photochemically generated pendant benzoyl peroxides in both “grafting from” and “grafting to” techniques
- Spectral characterisation of new organic fluorescent dyes with an alkoxysilane moiety and their utilisation for the labelling of layered silicates
- Substituted homoallenyl aldehydes and their derivatives. Part 1: Homoallenyl aldehydes and protected hydrazones
- Substituted homoallenyl aldehydes and their derivatives. Part 2: Azines
- Methyltrioxorhenium-catalysed oxidation of secondary amines to nitrones in ionic liquids
- Thiophenium-ylides: Synthesis and reactivity
- Aminohydroxylation of divinylcarbinol and its application to the synthesis of bicyclic hydroxypyrrolidine and aminotetrahydrofuran building blocks
- Novel quercetin derivatives: synthesis and screening for anti-oxidant activity and aldose reductase inhibition
- Total synthesis of N,O,O,O-tetraacetyl-d-ribo-phytosphingosine and its 2-epi-congener
- A concise synthesis of enantiomerically pure aroyl-l-alanines and dihydroaroyl-l-alanines
- Synthesis and properties of macrocyclic diazene switch with binaphthalene unit attached via acrylamide linkers
- Conjugated push-pull salts derived from linear benzobisthiazole: preparation and optical properties
- Effect of reactants’ concentration on the ratio and yield of E,Z isomers of isatin-3-(4-phenyl)semicarbazone and N-methylisatin-3-(4-phenyl)semicarbazone
Articles in the same Issue
- Professor Dr. Štefan Toma—excellent scientist and teacher—celebrates his 75th birthday
- Palladium-catalysed Claisen rearrangement of 6-allyloxypurines
- Applicability of photochemically generated pendant benzoyl peroxides in both “grafting from” and “grafting to” techniques
- Spectral characterisation of new organic fluorescent dyes with an alkoxysilane moiety and their utilisation for the labelling of layered silicates
- Substituted homoallenyl aldehydes and their derivatives. Part 1: Homoallenyl aldehydes and protected hydrazones
- Substituted homoallenyl aldehydes and their derivatives. Part 2: Azines
- Methyltrioxorhenium-catalysed oxidation of secondary amines to nitrones in ionic liquids
- Thiophenium-ylides: Synthesis and reactivity
- Aminohydroxylation of divinylcarbinol and its application to the synthesis of bicyclic hydroxypyrrolidine and aminotetrahydrofuran building blocks
- Novel quercetin derivatives: synthesis and screening for anti-oxidant activity and aldose reductase inhibition
- Total synthesis of N,O,O,O-tetraacetyl-d-ribo-phytosphingosine and its 2-epi-congener
- A concise synthesis of enantiomerically pure aroyl-l-alanines and dihydroaroyl-l-alanines
- Synthesis and properties of macrocyclic diazene switch with binaphthalene unit attached via acrylamide linkers
- Conjugated push-pull salts derived from linear benzobisthiazole: preparation and optical properties
- Effect of reactants’ concentration on the ratio and yield of E,Z isomers of isatin-3-(4-phenyl)semicarbazone and N-methylisatin-3-(4-phenyl)semicarbazone