Home A concise synthesis of enantiomerically pure aroyl-l-alanines and dihydroaroyl-l-alanines
Article
Licensed
Unlicensed Requires Authentication

A concise synthesis of enantiomerically pure aroyl-l-alanines and dihydroaroyl-l-alanines

  • Mária Gardiánová EMAIL logo , Ľuboš Slížik , Anna Koreňová , František Považanec and Dušan Berkeš
Published/Copyright: September 20, 2012
Become an author with De Gruyter Brill

Abstract

Straightforward preparation of enantiomerically highly enriched N-substituted aroylalanines has been developed. This process involves the combination of crystallization-induced asymmetric transformation and a conjugate addition of N-nucleophiles to the corresponding aroylacrylic acids. Further transformations to 3,4-dichlorobenzoylalanine and aroyl-l-alanines via periodate oxidation and stereoselective reduction to N-substituted syn-4-aryl-4-hydroxy-2-aminobutanoic acids are also described.

[1] Anderson, N. G. (2005). Developing processes for crystallization-induced asymmetric transformation. Organic Process Research & Development, 9, 800–813. DOI: 10.1021/op050119y. http://dx.doi.org/10.1021/op050119y10.1021/op050119ySearch in Google Scholar

[2] Awasthi, A. K., Boys, M. L., Cain-Janicki, K. J., Colson, P. J., Doubleday, W. W., Duran, J. E., & Farid, P. N. (2005). Practical enantioselective synthesis of β-substituted-β-amino esters. The Journal of Organic Chemistry, 70, 5387–5397. DOI: 10.1021/jo050177h. http://dx.doi.org/10.1021/jo050177h10.1021/jo050177hSearch in Google Scholar

[3] Barfoot, C. W., Harvey, J. E., Kenworthy, M. N., Kilburn, J. P., Ahmed, M., & Taylor, R. J. K. (2005). Highly functionalised organolithium and organoboron reagents for the preparation of enantiomerically pure α-amino acids. Tetrahedron, 61, 3403–3417. DOI: 10.1016/j.tet.2004.10.097. http://dx.doi.org/10.1016/j.tet.2004.10.09710.1016/j.tet.2004.10.097Search in Google Scholar

[4] Berkeš, D., Kolarovič, A., & Považanec, F. (2000). Stereoselective sodium borohydride reduction, catalyzed by manganese(II) chloride, of γ-oxo-α-amino acids. A practical approach to syn-γ-hydroxy-α-amino acids. Tetrahedron Letters, 41, 5257–5260. DOI: 10.1016/s0040-4039(00)00800-5. http://dx.doi.org/10.1016/S0040-4039(00)00800-510.1016/S0040-4039(00)00800-5Search in Google Scholar

[5] Berkeš, D., Kolarovič, A., Manduch, R., Baran, P., & Považanec, F. (2005). Crystallization-induced asymmetric transformations (CIAT): stereoconvergent acid-catalyzed lactonization of substituted 2-amino-4-aryl-4-hydroxybutanoic acids. Tetrahedron: Asymmetry, 16, 1927–1934. DOI: 10.1016/j.tetasy.2005.04.024. http://dx.doi.org/10.1016/j.tetasy.2005.04.02410.1016/j.tetasy.2005.04.024Search in Google Scholar

[6] Berkeš, D., Jakubec, P., Winklerová, D., Považanec, F., & Daich, A. (2007). CIAT with simultaneous epimerization at two stereocenters. Synthesis of substituted β-methyl-α-homophenylalanines. Organic & Biomolecular Chemistry, 5, 121–124. DOI: 10.1039/b613103d. http://dx.doi.org/10.1039/b613103d10.1039/B613103DSearch in Google Scholar

[7] Bianchi, M., Butti, A., Christidis, Y., Perronnet, J., Barzaghi, F., Cesana, R., & Nencioni, A. (1988). Gastric antisecretory, anti-ulcer and cytoprotective properties of substituted (E)-4-phenyl- and heteroaryl-4-oxo-2-butenoic acids. European Journal of Medicinal Chemistry, 23, 45–52. DOI: 10.1016/0223-5234(88)90166-3. http://dx.doi.org/10.1016/0223-5234(88)90166-310.1016/0223-5234(88)90166-3Search in Google Scholar

[8] Brands, K. M. J., & Davies, A. J. (2006). Crystallizationinduced diastereomer transformations. Chemical Reviews, 106, 2711–2733. DOI: 10.1021/cr0406864. http://dx.doi.org/10.1021/cr040686410.1021/cr0406864Search in Google Scholar

[9] Ferraris, D., Young, B., Cox, C., Dudding, T., Drury, W. J., III, Ryzhkov, L., Taggi, A. E., & Lectka, T. (2001). Catalytic, enantioselective alkylation of α-imino esters: The synthesis of nonnatural α-amino acid derivatives. Journal of the American Chemical Society, 124, 67–77. DOI: 10.1021/ja016838j. http://dx.doi.org/10.1021/ja016838j10.1021/ja016838jSearch in Google Scholar

[10] Golubev, A. S., Sewald, N., & Burger, K. (1996). Synthesis of γ-oxo α-amino acids from L-aspartic acid. Tetrahedron, 52, 14757–14776. DOI: 10.1016/0040-4020(96)00942-8. http://dx.doi.org/10.1016/0040-4020(96)00942-810.1016/0040-4020(96)00942-8Search in Google Scholar

[11] Hanabusa, K., Maesaka, Y., Kimura, M., & Shirai, H. (1999). New gelators based on 2-amino-2-phenylethanol: Close gelatorchiral structure relationship. Tetrahedron Letters, 40, 2385–2388. DOI: 10.1016/s0040-4039(99)00195-1. http://dx.doi.org/10.1016/S0040-4039(99)00195-110.1016/S0040-4039(99)00195-1Search in Google Scholar

[12] Heiss, C., Anderson, J., & Phillips, R. S. (2003). Differential effects of bromination on substrates and inhibitors of kynureninase from Pseudomonas fluorescens. Organic & Biomolecular Chemistry, 1, 288–295. DOI: 10.1039/b208910f. http://dx.doi.org/10.1039/b208910f10.1039/b208910fSearch in Google Scholar

[13] Jakubec, P., Berkeš, D., Šiška, R., Gardianová, M., & Považanec, F. (2006a). Crystallisation induced asymmetric transformation (CIAT) in the synthesis of furoylalanines and furylcarbinols. Tetrahedron: Asymmetry, 17, 1629–1637. DOI: 10.1016/j.tetasy.2006.04.024. http://dx.doi.org/10.1016/j.tetasy.2006.04.02410.1016/j.tetasy.2006.04.024Search in Google Scholar

[14] Jakubec, P., Berkeš, D., Kolarovič, A., & Považanec, F. (2006b). Asymmetric synthesis of aliphatic α-amino and γ-hydroxy-α-amino acids and introduction of a template for crystallization-induced asymmetric transformation. Synthesis, 2006, 4032–4040. DOI: 10.1055/s-2006-950319. http://dx.doi.org/10.1055/s-2006-95031910.1055/s-2006-950319Search in Google Scholar

[15] Jakubec, P., Petráš, P., Ďuriš, A., & Berkeš, D. (2010). The first example of a crystallization-induced asymmetric transformation (CIAT) in the Mannich reaction. Tetrahedron: Asymmetry, 21, 69–74. DOI: 10.1016/j.tetasy.2009.12.014. http://dx.doi.org/10.1016/j.tetasy.2009.12.01410.1016/j.tetasy.2009.12.014Search in Google Scholar

[16] Jousseaume, T., Wurz, N. E., & Glorius, F. (2011). Highly enantioselective synthesis of α-amino acid derivatives by an NHC-catalyzed intermolecular Stetter reaction. Angewandte Chemie International Edition, 50, 1410–1414. DOI: 10.1002/anie.201006548. http://dx.doi.org/10.1002/anie.20100654810.1002/anie.201006548Search in Google Scholar

[17] Jursic, B. S., Upadhyay, S. K., Creech, C. C., & Neumann, D. M. (2010). Novel and efficient synthesis and antifungal evaluation of 2,3-functionalized cholestane and androstane derivatives. Bioorganic & Medicinal Chemistry Letters, 20, 7372–7375. DOI: 10.1016/j.bmcl.2010.10.044. http://dx.doi.org/10.1016/j.bmcl.2010.10.04410.1016/j.bmcl.2010.10.044Search in Google Scholar

[18] Kolarovic, A., Berkeš, D., Baran, P., & Povazanec, F. (2001). Crystallization-induced dynamic resolution (CIDR) and its application to the synthesis of unnatural N-substituted amino acids derived from aroylacrylic acids. Tetrahedron Letters, 42, 2579–2582. DOI: 10.1016/s0040-4039(01)00221-0. http://dx.doi.org/10.1016/S0040-4039(01)00221-010.1016/S0040-4039(01)00221-0Search in Google Scholar

[19] Lin, W., He, Z., Zhang, H., Zhang, X., Mi, A., & Jiang, Y. (2001). Amino acid anhydride hydrochlorides as acylating agents in Friedel-Crafts reaction: A practical synthesis of l-homophenylalanine. Synthesis, 2001, 1007–1009. DOI: 10.1055/s-2001-14563. http://dx.doi.org/10.1055/s-2001-1456310.1055/s-2001-14563Search in Google Scholar

[20] McKennon, M. J., Meyers, A. I., Drauz, K., & Schwarm, M. (1993). A convenient reduction of amino acids and their derivatives. The Journal of Organic Chemistry, 58, 3568–3571. DOI: 10.1021/jo00065a020. http://dx.doi.org/10.1021/jo00065a02010.1021/jo00065a020Search in Google Scholar

[21] Mokhallalati, M. K., & Pridgen, L. N. (1993). Lead tetraacetate cleavage of chiral phenylglycinol derived secondary amines without racemization. Synthetic Communications, 23, 2055–2064. DOI: 10.1080/00397919308009866. http://dx.doi.org/10.1080/0039791930800986610.1080/00397919308009866Search in Google Scholar

[22] Myint, A. M., Schwarz, M. J., & Müller, N. (2012). The role of the kynurenine metabolism in major depression. Journal of Neural Transmission, 119, 245–251. DOI: 10.1007/s00702-011-0741-3. http://dx.doi.org/10.1007/s00702-011-0741-310.1007/s00702-011-0741-3Search in Google Scholar

[23] Nakamura, Y., Matsubara, R., Kiyohara, H., & Kobayashi, S. (2003). Catalytic, asymmetric Mannich-type reactions of α-imino esters bearing readily removable substituents on nitrogen. Organic Letters, 5, 2481–2484. DOI: 10.1021/ol034717d. http://dx.doi.org/10.1021/ol034717d10.1021/ol034717dSearch in Google Scholar

[24] Natalini, B., Mattoli, L., Pellicciari, R., Carpenedo, R., Chiarugi, A., & Moroni, F. (1995). Synthesis and activity of enantiopure (S)-(m-nitrobenzoyl) alanine, potent kynurenine-3-hydroxylase inhibitor. Bioorganic & Medicinal Chemistry Letters, 5, 1451–1454. DOI: 10.1016/0960-894x(95)00255-r. http://dx.doi.org/10.1016/0960-894X(95)00255-R10.1016/0960-894X(95)00255-RSearch in Google Scholar

[25] Numazawa, M., Shelangouski, M., & Nakakoshi, M. (2001). Production of 16β-(acetoxy)acetoxy derivatives by reaction of 17-keto steroid enol acetates with lead(IV) acetate. Steroids, 66, 743–748. DOI: 10.1016/s0039-128x(01)00103-9. http://dx.doi.org/10.1016/S0039-128X(01)00103-910.1016/S0039-128X(01)00103-9Search in Google Scholar

[26] Pellicciari, R., Natalini, B., Costantino, G., Mahmoud, M. R., Mattoli, L., Sadeghpour, B. M., Moroni, F., Chiarugi, A., & Carpenedo, R. (1994). Modulation of the kynurenine pathway in search for new neuroprotective agents. Synthesis and preliminary evaluation of (m-nitrobenzoyl)alanine, a potent inhibitor of kynurenine-3-hydroxylase. Journal of Medicinal Chemistry, 37, 647–655. DOI: 10.1021/jm00031a015. http://dx.doi.org/10.1021/jm00031a01510.1021/jm00031a015Search in Google Scholar PubMed

[27] Pellicciari, R., Rizzo, R. C., Costantino, G., Marinozzi, M., Amori, L., Guidetti, P., Wu, H. Q., & Schwarcz, R. (2006). Modulators of the kynurenine pathway of tryptophan metabolism: Synthesis and preliminary biological evaluation of (S)-4-(ethylsulfonyl)benzoylalanine, a potent and selective kynurenine aminotransferase II (KAT II) inhibitor. ChemMedChem, 1, 528–531. DOI: 10.1002/cmdc.200500095. http://dx.doi.org/10.1002/cmdc.20050009510.1002/cmdc.200500095Search in Google Scholar PubMed

[28] Pellicciari, R., Venturoni, F., Bellocchi, D., Carotti, A., Marinozzi, M., Macchiarulo, A., Amori, L., & Schwarcz, R. (2008). Sequence variants in kynurenine aminotransferase II (KAT II) orthologs determine different potencies of the inhibitor S-ESBA. ChemMedChem, 3, 1199–1202. DOI: 10.1002/cmdc.200800109. http://dx.doi.org/10.1002/cmdc.20080010910.1002/cmdc.200800109Search in Google Scholar PubMed

[29] Sakai, K., Sakurai, R., & Hirayama, N. (2004). Chiral discrimination controlled by the solvent dielectric constant. Tetrahedron: Asymmetry, 15, 1073–1076. DOI: 10.1016/j.tetasy.2004.02.015. http://dx.doi.org/10.1016/j.tetasy.2004.02.01510.1016/j.tetasy.2004.02.015Search in Google Scholar

[30] Stalker, R. A., Munsch, T. E., Tran, J. D., Nie, X., Warmuth, R., Beatty, A., & Aakeröy, C. B. (2002). Asymmetric synthesis of two new conformationally constrained lysine derivatives. Tetrahedron, 58, 4837–4849. DOI: 10.1016/s00404020(02)00450-7. http://dx.doi.org/10.1016/S0040-4020(02)00450-7Search in Google Scholar

[31] Stone, T. W., Forrest, C. M., & Darlington, L. G. (2012). Kynurenine pathway inhibition as a therapeutic strategy for neuroprotection. FEBS Journal, 279, 1386–1397. DOI: 10.1111/j.1742-4658.2012.08487.x. http://dx.doi.org/10.1111/j.1742-4658.2012.08487.x10.1111/j.1742-4658.2012.08487.xSearch in Google Scholar PubMed

[32] Upreti, M., Pant, S., Dandia, A., & Pant, U. C. (1996). Synthesis of 8-substituted-2-carboxy-4-(4-fluorophenyl)-2,3-dihydro-1,5-benzothiazepines. Phosphorus, Sulfur, and Silicon and the Related Elements, 113, 165–171. DOI: 10.1080/10426509608046387. http://dx.doi.org/10.1080/1042650960804638710.1080/10426509608046387Search in Google Scholar

[33] Varasi, M., Giordani, A., Speciale, C., Cini, M., & Bianchetti, A. (1999). US Patent No. 5,973,006. Washington, DC, USA: U.S. Patent and Trademark Office. Search in Google Scholar

[34] Warmuth, R., Munsch, T. E., Stalker, R. A., Li, B., & Beatty, A. (2001). Enantioselective synthesis of benzocyclic α,α-dialkylamino acids: new insight into the solvent dependent stereoselectivity of the TMSCN addition to phenylglycinol derived imines. Tetrahedron, 57, 6383–6397. DOI: 10.1016/s0040-4020(01)00505-1. http://dx.doi.org/10.1016/S0040-4020(01)00505-110.1016/S0040-4020(01)00505-1Search in Google Scholar

[35] Yamada, M., Nagashima, N., Hasegawa, J., & Takahashi, S. (1998). A highly efficient asymmetric synthesis of methoxyhomophenylalanine using Michael addition of phenethylamine. Tetrahedron Letters, 39, 9019–9022. DOI: 10.1016/s0040-4039(98)02023-1. http://dx.doi.org/10.1016/S0040-4039(98)02023-110.1016/S0040-4039(98)02023-1Search in Google Scholar

[36] Yoshioka, R. (2007). Racemization, optical resolution and crystallization-induced asymmetric transformation of amino acids and pharmaceutical intermediates. Novel Optical Resolution Technologies, Topics in Current Chemistry, 269, 83–132. DOI: 10.1007/1282006094. http://dx.doi.org/10.1007/128_2006_094Search in Google Scholar

[37] Zwilling, D., Huang, S. Y., Sathyasaikumar, K. V., Notarangelo, F. M., Guidetti, P., Wu, H. Q., Lee, J., Truong, J., Andrews-Zwilling, Y., Hsieh, E. W., Louie, J. Y., Wu, T., Screarcie-Levie, K., Patrick, C., Adame, A., Giorgini, F., Moussaoui, S., Laue, G., Rassoulpour, A., Flik, G., Huang, Y., Muchowski, J. M., Masliah, E., Schwarcz, R., & Muchowski, P. J. (2011). Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration. Cell, 145, 863–874. DOI: 10.1016/j.cell.2011.05.020. http://dx.doi.org/10.1016/j.cell.2011.05.02010.1016/j.cell.2011.05.020Search in Google Scholar PubMed PubMed Central

Published Online: 2012-9-20
Published in Print: 2013-1-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Professor Dr. Štefan Toma—excellent scientist and teacher—celebrates his 75th birthday
  2. Palladium-catalysed Claisen rearrangement of 6-allyloxypurines
  3. Applicability of photochemically generated pendant benzoyl peroxides in both “grafting from” and “grafting to” techniques
  4. Spectral characterisation of new organic fluorescent dyes with an alkoxysilane moiety and their utilisation for the labelling of layered silicates
  5. Substituted homoallenyl aldehydes and their derivatives. Part 1: Homoallenyl aldehydes and protected hydrazones
  6. Substituted homoallenyl aldehydes and their derivatives. Part 2: Azines
  7. Methyltrioxorhenium-catalysed oxidation of secondary amines to nitrones in ionic liquids
  8. Thiophenium-ylides: Synthesis and reactivity
  9. Aminohydroxylation of divinylcarbinol and its application to the synthesis of bicyclic hydroxypyrrolidine and aminotetrahydrofuran building blocks
  10. Novel quercetin derivatives: synthesis and screening for anti-oxidant activity and aldose reductase inhibition
  11. Total synthesis of N,O,O,O-tetraacetyl-d-ribo-phytosphingosine and its 2-epi-congener
  12. A concise synthesis of enantiomerically pure aroyl-l-alanines and dihydroaroyl-l-alanines
  13. Synthesis and properties of macrocyclic diazene switch with binaphthalene unit attached via acrylamide linkers
  14. Conjugated push-pull salts derived from linear benzobisthiazole: preparation and optical properties
  15. Effect of reactants’ concentration on the ratio and yield of E,Z isomers of isatin-3-(4-phenyl)semicarbazone and N-methylisatin-3-(4-phenyl)semicarbazone
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0246-z/html
Scroll to top button