Startseite Sol-gel thin films with anti-reflective and self-cleaning properties
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Sol-gel thin films with anti-reflective and self-cleaning properties

  • Hasan Çamurlu EMAIL logo , Ömer Kesmez , Esin Burunkaya , Nadir Kiraz , Zerin Yeşil , Meltem Asiltürk und Ertuğrul Arpaç
Veröffentlicht/Copyright: 5. April 2012
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Self-cleaning photocatalytic TiO2 films are beneficial since they reduce the maintenance cost and enhance the efficiency of various optical systems, especially thermal and photovoltaic solar systems. However, the presence of a TiO2 layer on glass reduces the transmission of incident light, which leads to a decrease in efficiency. This drawback can be overcome by applying a layer of anti-reflective coating beneath the TiO2 layer. Generally, the anti-reflective layer is porous silica. The presence of the anti-reflective layer compensates for the loss of light transmittance caused by the photocatalytic TiO2 top layer. This paper reviews some of the previous and the latest fundamental studies in the literature on anti-reflective, self-cleaning and multi-functional films.

[1] Abe, K., Sanada, Y., & Morimoto, T. (2003). Anti-reflective coatings for CRTs by sol-gel process. Journal of Sol-Gel Science and Technology, 26, 709–713. DOI: 10.1023/a:1020737902758. http://dx.doi.org/10.1023/A:102073790275810.1023/A:1020737902758Suche in Google Scholar

[2] Akarsu, M., Asiltürk, M., Sayilkan, F., Kiraz, N., Arpaç, E., & Sayilkan, H. (2006). A novel approach to the hydrothermal synthesis of anatase titania nanoparticles and the photocatalytic degradation of Rhodamine B. Turkish Journal of Chemistry, 30, 333–343. Suche in Google Scholar

[3] Almquist, C. B., & Biswas, P. (2002). Role of synthesis method and particle size of nanostructured TiO2 on its photoactivity. Journal of Catalysis, 212, 145–156. DOI: 10.1006/jcat.2002.3783. http://dx.doi.org/10.1006/jcat.2002.378310.1006/jcat.2002.3783Suche in Google Scholar

[4] Arconada, N., Castro, Y., Duran, A., & Hequet, V. (2011). Photocatalytic oxidation of methyl ethyl ketones over solgel mesoporous and meso-structured TiO2 films obtained by EISA method. Applied Catalysis B: Environmental, 107, 52–58. DOI: 10.1016/j.apcatb.2011.06.036. http://dx.doi.org/10.1016/j.apcatb.2011.06.03610.1016/j.apcatb.2011.06.036Suche in Google Scholar

[5] Aroutiounian, V. M., Martirosyan, K., & Soukiassian, P. (2006). Almost zero reflectance of a silicon oxynitride/porous silicon double layer antireflection coating for silicon photovoltaic cells. Journal of Physics D: Applied Physics, 39, 1623–1625. DOI: 10.1088/0022-3727/39/8/022. http://dx.doi.org/10.1088/0022-3727/39/8/02210.1088/0022-3727/39/8/022Suche in Google Scholar

[6] Asiltürk, M., Sayılkan, F., Erdemoğlu, S., Akarsu, M., Sayılkan, H., Erdemoğlu, M., & Arpaç, E. (2006). Characterization of the hydrothermally synthesized nano-TiO2 crystallite and the photocatalytic degradation of Rhodamine B. Journal of Hazardous Materials, 129, 164–170. DOI: 10.1016/j.jhazmat.2005.08.027. http://dx.doi.org/10.1016/j.jhazmat.2005.08.02710.1016/j.jhazmat.2005.08.027Suche in Google Scholar

[7] Babu, V. J., Nair, A. S., Peining, Z., & Ramakrishna, S. (2011). Synthesis and characterization of rice grains like nitrogen-doped TiO2 nanostructures by electrospinning-photocatalysis. Materials Letters, 65, 3064–3068. DOI: 10.1016/j.matlet.2011.06.035. http://dx.doi.org/10.1016/j.matlet.2011.06.03510.1016/j.matlet.2011.06.035Suche in Google Scholar

[8] Banerjee, A. N. (2011). The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2-based nanostructures. Nanotechnology, Science and Applications, 4, 35–65. DOI: 10.2147/nsa.S9040. http://dx.doi.org/10.2147/NSA.S904010.2147/NSA.S9040Suche in Google Scholar

[9] Battaglin, C., Caccavale, F., Menelle, A., Montecchi, M., Nichelatti, E., Nicoletti, F., & Polato, P. (1999). Characterisation of antireflective TiO2//SiO2 coatings by complementary techniques. Thin Solid Films, 351, 176–179. DOI: 10.1016/s0040-6090(99)00212-6. http://dx.doi.org/10.1016/S0040-6090(99)00212-610.1016/S0040-6090(99)00212-6Suche in Google Scholar

[10] Beck, U., Smith, D. T., Reiners, G., & Dapkunas, S. J. (1998). Mechanical properties of SiO2 and Si3N4 coatings: a BAM/NIST co-operative project. Thin Solid Films, 332, 164–171. DOI: 10.1016/s0040-6090(98)00989-4. http://dx.doi.org/10.1016/S0040-6090(98)00989-410.1016/S0040-6090(98)00989-4Suche in Google Scholar

[11] Bellardita, M., Addamo, M., Di Paola, A., & Palmisano, L. (2007). Photocatalytic behaviour of metal-loaded TiO2 aqueous dispersions and films. Chemical Physics, 339, 94–103. DOI: 10.1016/j.chemphys.2007.06.003. http://dx.doi.org/10.1016/j.chemphys.2007.06.00310.1016/j.chemphys.2007.06.003Suche in Google Scholar

[12] Brinker, C. J., Keefer, K. D., Schaefer, D. W., Assink, R. A., Kay, B. D., & Ashley, C. S. (1984). Sol-gel transition in simple silicates II. Journal of Non-Crystalline Solids, 63, 45–59. DOI: 10.1016/0022-3093(84)90385-5. http://dx.doi.org/10.1016/0022-3093(84)90385-510.1016/0022-3093(84)90385-5Suche in Google Scholar

[13] Brinker, C. J., & Scherer, G. W. (1990). Sol-gel science: The physics and chemistry of sol-gel processing. San Diego, CA, USA: Academic Press. Suche in Google Scholar

[14] Bui, D. N., Kang, S. Z., Li, X., & Mu, J. (2011). Effect of Si doping on the photocatalytic activity and photo-electrochemical property of TiO2 nanoparticles. Catalysis Communications, 13, 14–17. DOI: 10.1016/j.catcom.2011.06.016. http://dx.doi.org/10.1016/j.catcom.2011.06.01610.1016/j.catcom.2011.06.016Suche in Google Scholar

[15] Burunkaya, E., Kesmez, Ö., Kiraz, N., Çamurlu, H. E., Asiltürk, M., & Arpaç, E. (2010). Sn4+ or Ce3+ doped TiO2 photocatalytic nanometric films on antireflective nano-SiO2 coated glass. Materials Chemistry and Physics, 120, 272–276. DOI: 10.1016/j.matchemphys.2009.11.009. http://dx.doi.org/10.1016/j.matchemphys.2009.11.00910.1016/j.matchemphys.2009.11.009Suche in Google Scholar

[16] Chen, D. (2001). Anti-reflection (AR) coatings made by sol-gel processes: A review. Solar Energy Materials and Solar Cells, 68, 313–336. DOI: 10.1016/s0927-0248(00)00365-2. http://dx.doi.org/10.1016/S0927-0248(00)00365-210.1016/S0927-0248(00)00365-2Suche in Google Scholar

[17] Chen, X., & Mao, S. S. (2007). Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chemical Reviews, 107, 2891–2959. DOI: 10.1021/cr0500535. http://dx.doi.org/10.1021/cr050053510.1021/cr0500535Suche in Google Scholar

[18] Choi, W., Termin, A., & Hoffmann, M. R. (1994). The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics. Journal of Physical Chemistry, 98, 13669–13679. DOI: 10.1021/j100102a038. http://dx.doi.org/10.1021/j100102a03810.1021/j100102a038Suche in Google Scholar

[19] Crepaldi, E. L., Soler-Illia, G. J. de A. A., Grosso, D., Cagnol, F., Ribot, F., & Sanchez, C. (2003). Controlled formation of highly organized mesoporous titania thin films: From mesostructured hybrids to mesoporous nanoanatase TiO2. Journal of the American Chemical Society, 125, 9770–9786. DOI: 10.1021/ja030070g. http://dx.doi.org/10.1021/ja030070g10.1021/ja030070gSuche in Google Scholar

[20] de Lasa, H., Serrano, B., & Salaces, M. (2005). Photocatalytic reaction engineering. New York, NY, USA: Springer Science Business Media Inc. 10.1007/0-387-27591-6Suche in Google Scholar

[21] Dorcheh, A. S., & Abbasi, M. H. (2008). Silica aerogel; synthesis, properties and characterization. Journal of Materials Processing Technology, 199, 10–26. DOI: 10.1016/j.jmatprotec.2007.10.060. http://dx.doi.org/10.1016/j.jmatprotec.2007.10.06010.1016/j.jmatprotec.2007.10.060Suche in Google Scholar

[22] Elmer, T. H., & Waters, H. (1977). US Patent No. 4019884. Washington, DC, USA: US Patent and Trademark Office. Suche in Google Scholar

[23] Fabes, B. D., Zelinski, B. J. J., & Uhlman, D. R. (1993). Sol-gel derived ceramic coatings. In J. B. Watchman, & R. A. Haber (Eds.), Ceramic films and coatings (pp. 224–275). Westwood, NJ, USA: Noyes Publications. Suche in Google Scholar

[24] Fan, C., Xue, P., & Sun, Y. (2006). Preparation of nano-TiO2 doped with cerium and its photocatalytic activity. Journal of Rare Earths, 24, 309–313. DOI: 10.1016/s1002-0721(06)60115-4. http://dx.doi.org/10.1016/S1002-0721(06)60115-410.1016/S1002-0721(06)60115-4Suche in Google Scholar

[25] Fardad, M. A. (2000). Catalysts and the structure of SiO2 solgel films. Journal of Materials Science, 35, 1835–1841. DOI: 10.1023/a:1004749107134. http://dx.doi.org/10.1023/A:100474910713410.1023/A:1004749107134Suche in Google Scholar

[26] Faustini, M., Nicole, L., Boissière, C., Innocenzi, P., Sanchez, C., & Grosso, D. (2010). Hydrophobic, antireflective, self-cleaning, and antifogging sol-gel coatings: An example of multifunctional nanostructured materials for photovoltaic cells. Chemistry of Materials, 22, 4406–4413. DOI: 10.1021/cm100937e. http://dx.doi.org/10.1021/cm100937e10.1021/cm100937eSuche in Google Scholar

[27] Fowles, G. R. (1989). Introduction to modern optics. New York, NY, USA: Dover Publications. Suche in Google Scholar

[28] Fujishima, A., Zhang, X., & Tryk, D. A. (2008). TiO2 photocatalysis and related surface phenomena. Surface Science Reports, 63, 515–582. DOI: 10.1016/j.surfrep.2008.10.001. http://dx.doi.org/10.1016/j.surfrep.2008.10.00110.1016/j.surfrep.2008.10.001Suche in Google Scholar

[29] Gaylarde, C. C., Morton, L. H. G., Loh, K., & Shirakawa, M. A. (2011). Biodeterioration of external architectural paint films — A review. International Biodeterioration & Biodegradation, 65, 1189–1198. DOI: 10.1016/j.ibiod.2011.09.005. http://dx.doi.org/10.1016/j.ibiod.2011.09.00510.1016/j.ibiod.2011.09.005Suche in Google Scholar

[30] Ghorai, T. K., Chakraborty, M., & Pramanik, P. (2011). Photocatalytic performance of nano-photocatalyst from TiO2 and Fe2O3 by mechanochemical synthesis. Journal of Alloys and Compounds, 509, 8158–8164. DOI: 10.1016/j.jallcom.2011.05.069. http://dx.doi.org/10.1016/j.jallcom.2011.05.06910.1016/j.jallcom.2011.05.069Suche in Google Scholar

[31] Glöß, D., Frach, P., Gottfried, C., Klinkenberg, S., Liebig, J. S., Hentsch, W., Liepack, H., & Krug, M. (2008). Multifunctional high-reflective and antireflective layer systems with easy-to-clean properties. Thin Solid Films, 516, 4487–4489. DOI: 10.1016/j.tsf.2007.05.097. http://dx.doi.org/10.1016/j.tsf.2007.05.09710.1016/j.tsf.2007.05.097Suche in Google Scholar

[32] Grosso, D., Cagnol, F., Soler-Illia, G. J. de A. A., Crepaldi, E. L., Amenitsch, H., Brunet-Bruneau, A., & Sanchez, C. (2004). Fundamentals of mesostructuring through evaporation-induced self-assembly. Advanced Functional Materials, 14, 309–322. DOI: 10.1002/adfm.200305036. http://dx.doi.org/10.1002/adfm.20030503610.1002/adfm.200305036Suche in Google Scholar

[33] Guo, Z., Pereira, T., Choi, O., Wang, Y., & Hahn, H. T. (2006). Surface functionalized alumina nanoparticle filled polymeric nanocomposites with enhanced mechanical properties. Journal of Materials Chemistry, 16, 2800–2808. DOI: 10.1039/b603020c. http://dx.doi.org/10.1039/b603020c10.1039/b603020cSuche in Google Scholar

[34] Gupta, V. K., Jain, R., Mittal, A., Saleh, T. A., Nayak, A., Agarwal, S., & Sikarwar, S. (2012). Photo-catalytic degradation of toxic dye amaranth on TiO2/UV in aqueous suspensions. Materials Science and Engineering: C, 32, 12–17. DOI: 10.1016/j.msec.2011.08.018. http://dx.doi.org/10.1016/j.msec.2011.08.01810.1016/j.msec.2011.08.018Suche in Google Scholar PubMed

[35] Hamadanian, M., Reisi-Vanani, A., Behpour, M., & Esmaeily, A. S. (2011). Synthesis and characterization of Fe,Scodoped TiO2 nanoparticles: Application in degradation of organic water pollutants. Desalination, 281, 319–324. DOI: 10.1016/j.desal.2011.08.028. http://dx.doi.org/10.1016/j.desal.2011.08.02810.1016/j.desal.2011.08.028Suche in Google Scholar

[36] Hench, L. L., & West, J. K. (1990). The sol-gel process. Chemical Reviews, 90, 33–72. DOI: 10.1021/cr00099a003. http://dx.doi.org/10.1021/cr00099a00310.1021/cr00099a003Suche in Google Scholar

[37] Hinczewski, D. S., Hinczewski, M., Tepehan, F. Z., & Tepehan, G. G. (2005). Optical filters from SiO2 and TiO2 multi-layers using sol-gel spin coating method. Solar Energy Materials and Solar Cells, 87, 181–196. DOI: 10.1016/j.solmat.2004.07.022. http://dx.doi.org/10.1016/j.solmat.2004.07.02210.1016/j.solmat.2004.07.022Suche in Google Scholar

[38] Jeong, S. H., Kim, J. K., Kim, B. S., Shim, S. H., & Lee, B. T. (2004). Characterization of SiO2 and TiO2 films prepared using rf magnetron sputtering and their application to anti-reflection coating. Vacuum, 76, 507–515. DOI: 10.1016/j.vacuum.2004.06.003. http://dx.doi.org/10.1016/j.vacuum.2004.06.00310.1016/j.vacuum.2004.06.003Suche in Google Scholar

[39] Jing, L., Fu, H., Wang, B., Xin, B., Li, S., & Sun, J. (2006). Effects of Sn dopant on the photoinduced charge property and photocatalytic activity of TiO2 nanoparticles. Applied Catalysis B: Environmental, 62, 282–291. DOI: 10.1016/j.apcatb.2005.08.012. http://dx.doi.org/10.1016/j.apcatb.2005.08.01210.1016/j.apcatb.2005.08.012Suche in Google Scholar

[40] Jin, P., Xu, G., Tazawa, M., & Yoshimura, K. (2003). Design, formation and characterization of a novel multifunctional window with VO2 and TiO2 coatings. Applied Physics A: Materials Science & Processing, 77, 455–459. DOI: 10.1007/s00339-002-1460-2. http://dx.doi.org/10.1007/s00339-002-1460-210.1007/s00339-002-1460-2Suche in Google Scholar

[41] Kesmez, Ö., Burunkaya, E., Kiraz, N., Çamurlu, H. E., Asiltürk, M., & Arpaç, E. (2011). Effect of acid, water and alcohol ratios on sol-gel preparation of antireflective amorphous SiO2 coatings. Journal of Non-Crystalline Solids, 357, 3130–3135. DOI: 10.1016/j.jnoncrysol.2011.05.003. http://dx.doi.org/10.1016/j.jnoncrysol.2011.05.00310.1016/j.jnoncrysol.2011.05.003Suche in Google Scholar

[42] Kesmez, Ö., Çamurlu, H. E., Burunkaya, E., & Arpaç, E. (2009). Sol-gel preparation and characterization of antireflective and self-cleaning SiO2-TiO2 double-layer nanometric films. Solar Energy Materials and Solar Cells, 93, 1833–1839. DOI: 10.1016/j.solmat.2009.06.022. http://dx.doi.org/10.1016/j.solmat.2009.06.02210.1016/j.solmat.2009.06.022Suche in Google Scholar

[43] Kesmez, Ö., Çamurlu, H. E., Burunkaya, E., & Arpaç, E. (2010a). Preparation of antireflective SiO2 nanometric films. Ceramics International, 36, 391–394. DOI: 10.1016/j.ceramint.2009.07.030. http://dx.doi.org/10.1016/j.ceramint.2009.07.03010.1016/j.ceramint.2009.07.030Suche in Google Scholar

[44] Kesmez, Ö., Kiraz, N., Burunkaya, E., Çamurlu, H. E., Asiltürk, M., & Arpaç, E. (2010b). Effect of amine catalysts on preparation of nanometric SiO2 particles and antireflective films via sol-gel method. Journal of Sol-Gel Science and Technology, 56, 167–176. DOI: 10.1007/s10971-010-2290-x. http://dx.doi.org/10.1007/s10971-010-2290-x10.1007/s10971-010-2290-xSuche in Google Scholar

[45] Kiraz, N., Burunkaya, E., Kesmez, Ö., Çamurlu, H. E., Asiltürk, M., Yeşil, Z., & Arpaç, E. (2011). Preparation of Sn doped nanometric TiO2 powders by reflux and hydrothermal syntheses and their characterization. Journal of Sol-Gel Science and Technology, 59, 381–386. DOI: 10.1007/s10971-011-2515-7. http://dx.doi.org/10.1007/s10971-011-2515-710.1007/s10971-011-2515-7Suche in Google Scholar

[46] Koc, K., Tepehan, F. Z., & Tepehan, G. G. (2005). Antireflecting coating from Ta2O5 and SiO2 multilayer films. Journal of Materials Science, 40, 1363–1366. DOI: 10.1007/s10853-005-0566-2. http://dx.doi.org/10.1007/s10853-005-0566-210.1007/s10853-005-0566-2Suche in Google Scholar

[47] Lee, D., Rubner, M. F., & Cohen, R. E. (2006). All-nanoparticle thin-film coatings. Nano Letters, 6, 2305–2312. DOI: 10.1021/nl061776m. http://dx.doi.org/10.1021/nl061776m10.1021/nl061776mSuche in Google Scholar

[48] Lee, H. J., Song, M. Y., Jurng, J. S., & Park, Y. K. (2011). The synthesis and coating process of TiO2 nanoparticles using CVD process. Powder Technology, 214, 64–68. DOI: 10.1016/j.powtec.2011.07.036. http://dx.doi.org/10.1016/j.powtec.2011.07.03610.1016/j.powtec.2011.07.036Suche in Google Scholar

[49] Li, D., & Qu, J. (2009). The progress of catalytic technologies in water purification: A review. Journal of Environmental Sciences, 21, 713–719. DOI: 10.1016/s1001-0742(08)62329-3. http://dx.doi.org/10.1016/S1001-0742(08)62329-310.1016/S1001-0742(08)62329-3Suche in Google Scholar

[50] Lien, S. Y., Wuu, D. S., Yeh, W. C., & Liu, J. C. (2006). Tri-layer antireflection coatings (SiO2/SiO2-TiO2/TiO2) for silicon solar cells using a sol-gel technique. Solar Energy Materials and Solar Cells, 90, 2710–2719. DOI: 10.1016/j.solmat.2006.04.001. http://dx.doi.org/10.1016/j.solmat.2006.04.00110.1016/j.solmat.2006.04.001Suche in Google Scholar

[51] Linsebigler, A. L., Lu, G., & Yates, J. T. (1995). Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chemical Reviews, 95, 735–758. DOI: 10.1021/cr00035a013. http://dx.doi.org/10.1021/cr00035a01310.1021/cr00035a013Suche in Google Scholar

[52] Liu, Z., Zhang, X., Murakami, T., & Fujishima, A. (2008). Solgel SiO2/TiO2 bilayer films with self-cleaning and antireflection properties. Solar Energy Materials and Solar Cells, 92, 1434–1438. DOI: 10.1016/j.solmat.2008.06.005. http://dx.doi.org/10.1016/j.solmat.2008.06.00510.1016/j.solmat.2008.06.005Suche in Google Scholar

[53] Lopez, L., Daoud, W. A., & Dutta, D. (2010). Preparation of large scale photocatalytic TiO2 films by the sol-gel process. Surface and Coatings Technology, 205, 251–257. DOI: 10.1016/j.surfcoat.2010.06.028. http://dx.doi.org/10.1016/j.surfcoat.2010.06.02810.1016/j.surfcoat.2010.06.028Suche in Google Scholar

[54] Mammeri, F., Le Bourhis, E., Rozes, L., & Sanchez, C. (2005). Mechanical properties of hybrid organic-inorganic materials. Journal of Materials Chemistry, 15, 3787–3811. DOI: 10.1039/b507309j. http://dx.doi.org/10.1039/b507309j10.1039/b507309jSuche in Google Scholar

[55] Morimoto, T., Tomonaga, H., & Mitani, A. (1999). Ultraviolet ray absorbing coatings on glass for automobiles. Thin Solid Films, 351, 61–65. DOI: 10.1016/s0040-6090(98)01779-9. http://dx.doi.org/10.1016/S0040-6090(98)01779-910.1016/S0040-6090(98)01779-9Suche in Google Scholar

[56] Nakata, K., Sakai, M., Ochiai, T., Murakami, T., Takagi, K., & Fujishima, A. (2011). Antireflection and self-cleaning properties of a moth-eye-like surface coated with TiO2 particles. Langmuir, 27, 3275–3278. DOI: 10.1021/la200438p. http://dx.doi.org/10.1021/la200438p10.1021/la200438pSuche in Google Scholar PubMed

[57] Oliveira, D. F. M., Batista, P. S., Muller, P. S., Velani, V., França, M. D., de Souza, D. R., & Machado, A. E. H. (2012). Evaluating the effectiveness of photocatalysts based on titanium dioxide in the degradation of the dye Ponceau 4R. Dyes and Pigments, 92, 563–572. DOI: 10.1016/j.dyepig.2011.06.007. http://dx.doi.org/10.1016/j.dyepig.2011.06.00710.1016/j.dyepig.2011.06.007Suche in Google Scholar

[58] Pagliaro, M., Ciriminna, R., & Palmisano, G. (2009). Silica-based hybrid coatings. Journal of Materials Chemistry, 19, 3116–3126. DOI: 10.1039/b819615j. http://dx.doi.org/10.1039/b819615j10.1039/b819615jSuche in Google Scholar

[59] Prado, R., Beobide, G., Marcaide, A., Goikoetxea, J., & Aranzabe, A. (2010). Development of multifunctional sol-gel coatings: Anti-reflection coatings with enhanced self-cleaning capacity. Solar Energy Materials and Solar Cells, 94, 1081–1088. DOI: 10.1016/j.solmat.2010.02.031. http://dx.doi.org/10.1016/j.solmat.2010.02.03110.1016/j.solmat.2010.02.031Suche in Google Scholar

[60] Prevo, B. G., Hwang, Y., & Velev, O. D. (2005). Convective assembly of antireflective silica coatings with controlled thickness and refractive index. Chemistry of Materials, 17, 3642–3651. DOI: 10.1021/cm050416h. http://dx.doi.org/10.1021/cm050416h10.1021/cm050416hSuche in Google Scholar

[61] Putta, T., Lu, M. C., & Anotai, J. (2011). Photocatalytic activity of tungsten-doped TiO2 with hydrothermal treatment under blue light irradiation. Journal of Environmental Management, 92, 2272–2276. DOI: 10.1016/j.jenvman.2011.04.016. http://dx.doi.org/10.1016/j.jenvman.2011.04.01610.1016/j.jenvman.2011.04.016Suche in Google Scholar PubMed

[62] Rahman, I. A., Jafarzadeh, M., & Sipaut, C. S. (2009). Synthesis of organo-functionalized nanosilica via a co-condensation modification using γ-aminopropyltriethoxysilane (APTES). Ceramics International, 35, 1883–1888. DOI: 10.1016/j.ceramint.2008.10.028. http://dx.doi.org/10.1016/j.ceramint.2008.10.02810.1016/j.ceramint.2008.10.028Suche in Google Scholar

[63] Raut, H. K., Ganesh, V. A., Nair, A. S., & Ramakrishna, S. (2011). Anti-reflective coatings: A critical, in-depth review. Energy & Environmental Science, 4, 3779–3804. DOI: 10.1039/c1ee01297e. http://dx.doi.org/10.1039/c1ee01297e10.1039/c1ee01297eSuche in Google Scholar

[64] Sandia National Laboratories (2000). Coatings on glass. Technology Roadmap Workshop, January 18–19, 2000. Livermore, CA, USA. Suche in Google Scholar

[65] Sayılkan, F., Asiltürk, M., Kiraz, N., Burunkaya, E., Arpaç, E., & Sayılkan, H. (2009). Photocatalytic antibacterial performance of Sn4+-doped TiO2 thin films on glass substrate. Journal of Hazardous Materials, 162, 1309–1316. DOI: 10.1016/j.jhazmat.2008.06.043. http://dx.doi.org/10.1016/j.jhazmat.2008.06.04310.1016/j.jhazmat.2008.06.043Suche in Google Scholar PubMed

[66] Sayılkan, F., Asiltürk, M., Tatar, P., Kiraz, N., Arpaç, E., & Sayılkan, H. (2007). Photocatalytic performance of Sndoped TiO2 nanostructured mono and double layer thin films for Malachite Green dye degradation under UV and vislights. Journal of Hazardous Materials, 144, 140–146. DOI: 10.1016/j.jhazmat.2006.10.011. http://dx.doi.org/10.1016/j.jhazmat.2006.10.01110.1016/j.jhazmat.2006.10.011Suche in Google Scholar PubMed

[67] Schmidt, H., Scholze, H., & Kaiser, A. (1984). Principles of hydrolysis and condensation reaction of alkoxysilanes. Journal of Non-Crystalline Solids, 63, 1–11. DOI: 10.1016/0022-3093(84)90381-8. http://dx.doi.org/10.1016/0022-3093(84)90381-810.1016/0022-3093(84)90381-8Suche in Google Scholar

[68] Schüler, A., Dutta, D., de Chambrier, E., Roecker, C., De Temmerman, G., Oelhafen, P., & Scartezzini, J. L. (2006). Sol-gel deposition and optical characterization of multilayered SiO2/Ti1−xSixO2 coatings on solar collector glasses. Solar Energy Materials and Solar Cells, 90, 2894–2907. DOI: 10.1016/j.solmat.2006.05.003. http://dx.doi.org/10.1016/j.solmat.2006.05.00310.1016/j.solmat.2006.05.003Suche in Google Scholar

[69] Senthilnathan, J., & Philip, L. (2011). Photodegradation of methyl parathion and dichlorvos from drinking water with N-doped TiO2 under solar radiation. Chemical Engineering Journal, 172, 678–688. DOI: 10.1016/j.cej.2011.06.035. http://dx.doi.org/10.1016/j.cej.2011.06.03510.1016/j.cej.2011.06.035Suche in Google Scholar

[70] Shi, J. W., Zheng, J. T., & Wu, P. (2009). Preparation, characterization and photocatalytic activities of holmium-doped titanium dioxide nanoparticles. Journal of Hazardous Materials, 161, 416–422. DOI: 10.1016/j.jhazmat.2008.03.114. http://dx.doi.org/10.1016/j.jhazmat.2008.03.11410.1016/j.jhazmat.2008.03.114Suche in Google Scholar

[71] Štengl, V., Bakardjieva, S., & Murafa, N. (2009). Preparation and photocatalytic activity of rare earth doped TiO2 nanoparticles. Materials Chemistry and Physics, 114, 217–226. DOI: 10.1016/j.matchemphys.2008.09.025. http://dx.doi.org/10.1016/j.matchemphys.2008.09.02510.1016/j.matchemphys.2008.09.025Suche in Google Scholar

[72] Szczyrbowski, J., Brauer, G., Teschner, G., & Zmelty, A. (1998). Large-scale antireflective coatings on glass produced by reactive magnetron sputtering. Surface and Coatings Technology, 98, 1460–1466. DOI: 10.1016/s0257-8972(97)00151-5. http://dx.doi.org/10.1016/S0257-8972(97)00151-510.1016/S0257-8972(97)00151-5Suche in Google Scholar

[73] Tölke, T., Heft, A., & Pfuch, A. (2008). Photocatalytically, active multi-layer systems with enhanced transmission. Thin Solid Films, 516, 4578–4580. DOI: 10.1016/j.tsf.2007.05.088. http://dx.doi.org/10.1016/j.tsf.2007.05.08810.1016/j.tsf.2007.05.088Suche in Google Scholar

[74] Tong, H. S., & Hu, C. M. (1996). US Patent No. 5582859. Washington, DC, USA: US Patent and Trademark Office. Suche in Google Scholar

[75] Tong, T., Zhang, J., Tian, B., Chen, F., & He, D. (2008). Preparation of Fe3+ -doped TiO2 catalysts by controlled hydrolysis of titanium alkoxide and study on their photocatalytic activity for methyl orange degradation. Journal of Hazardous Materials, 155, 572–579. DOI: 10.1016/j.jhazmat.2007.11.106. http://dx.doi.org/10.1016/j.jhazmat.2007.11.10610.1016/j.jhazmat.2007.11.106Suche in Google Scholar PubMed

[76] Torres Delgado, G., Zuñiga Romero, C. I., Mayen Hernandez, S. A., Castanedo Perez, R., & Zelaya Angel, O. (2009). Optical and structural properties of the sol-gel-prepared ZnO thin films and their effect on the photocatalytic activity. Solar Energy Materials and Solar Cells, 93, 55–59. DOI: 10.1016/j.solmat.2008.03.020. http://dx.doi.org/10.1016/j.solmat.2008.03.02010.1016/j.solmat.2008.03.020Suche in Google Scholar

[77] Wang, Z., Chen, C., Wu, F., Zou, B., Zhao, M., Wang, J., & Feng, C. (2009). Photodegradation of rhodamine B under visible light by bimetal codoped TiO2 nanocrystals. Journal of Hazardous Materials, 164, 615–620. DOI: 10.1016/j.jhazmat.2008.08.041. http://dx.doi.org/10.1016/j.jhazmat.2008.08.04110.1016/j.jhazmat.2008.08.041Suche in Google Scholar PubMed

[78] Wang, D., Xiao, L., Luo, Q., Li, X., An, J., & Duan, Y. (2011). Highly efficient visible light TiO2 photocatalyst prepared by sol-gel method at temperatures lower than 300°C. Journal of Hazardous Materials, 192, 150–159. DOI: 10.1016/j.jhazmat.2011.04.110. http://dx.doi.org/10.1016/j.jhazmat.2011.02.01210.1016/j.jhazmat.2011.04.110Suche in Google Scholar

[79] Wu, T., Liu, G., Zhao, J., Hidaka, H., & Serpone, N. (1998). Photoassisted degradation of dye pollutants. V. Self-photosensitized oxidative transformation of rhodamine B under visible light irradiation in aqueous TiO2 dispersions. The Journal of Physical Chemistry B, 102, 5845–5851. DOI: 10.1021/jp980922c. http://dx.doi.org/10.1021/jp980922c10.1021/jp980922cSuche in Google Scholar

[80] Wu, X. M., Wang, L., Tan, Z. C., Li, G. H., & Qu, S. S. (2001). Preparation, characterization, and low-temperature heat capacities of nanocrystalline TiO2 ultrafine powder. Journal of Solid State Chemistry, 156, 220–224. DOI: 10.1006/jssc.2000.8991. http://dx.doi.org/10.1006/jssc.2000.899110.1006/jssc.2000.8991Suche in Google Scholar

[81] Yao, M., Chen, J., Zhao, C., & Chen, Y. (2009). Photocatalytic activities of ion doped TiO2 thin films when prepared on different substrates. Thin Solid Films, 517, 5994–5999. DOI: 10.1016/j.tsf.2009.03.169. http://dx.doi.org/10.1016/j.tsf.2009.03.16910.1016/j.tsf.2009.03.169Suche in Google Scholar

[82] Yoldas, B. E., & Partlow, D. P. (1985). US Patent No. 4535026. Washington, DC, USA: US Patent and Trademark Office. Suche in Google Scholar

[83] Zhang, X., Fujishima, A., Jin, M., Emeline, A. V., & Murakami, T. (2006). Double-layered TiO2-SiO2 nanostructured films with self-cleaning and antireflective properties. The Journal of Physical Chemistry B, 110, 25142–25148. DOI: 10.1021/jp064442u. http://dx.doi.org/10.1021/jp064442u10.1021/jp064442uSuche in Google Scholar

[84] Zhang, Q., Li, W., & Liu, S. (2011). Controlled fabrication of nanosized TiO2 hollow sphere particles via acid catalytic hydrolysis/hydrothermal treatment. Powder Technology, 212, 145–150. DOI: 10.1016/j.powtec.2011.05.004. http://dx.doi.org/10.1016/j.powtec.2011.05.00410.1016/j.powtec.2011.05.004Suche in Google Scholar

[85] Zhang, X. T., Sato, O., Taguchi, M., Einaga, Y., Murakami, T., & Fujishima, A. (2005). Self-cleaning particle coating with antireflection properties. Chemistry of Materials, 17, 696–700. DOI: 10.1021/cm0484201. http://dx.doi.org/10.1021/cm048420110.1021/cm0484201Suche in Google Scholar

[86] Zhang, Y., Xiong, G., Yao, N., Yang, W., & Fu, X. (2001). Preparation of titania-based catalysts for formaldehyde photocatalytic oxidation from TiCl4 by the sol-gel method. Catalysis Today, 68, 89–95. DOI: 10.1016/s0920-5861(01)00295-4. http://dx.doi.org/10.1016/S0920-5861(01)00295-410.1016/S0920-5861(01)00295-4Suche in Google Scholar

[87] Zhao, B., & Chen, Y. W. (2011). Ag/TiO2 sol prepared by a sol-gel method and its photocatalytic activity. Journal of Physics and Chemistry of Solids, 72, 1312–1318. DOI: 10.1016/j.jpcs.2011.07.025. http://dx.doi.org/10.1016/j.jpcs.2011.07.02510.1016/j.jpcs.2011.07.025Suche in Google Scholar

[88] Zheng, J., Liu, Z., Liu, X., Yan, X., Li, D., & Chu, W. (2011). Facile hydrothermal synthesis and characteristics of B-doped TiO2 hybrid hollow microspheres with higher photo-catalytic activity. Journal of Alloys and Compounds, 509, 3771–3776. DOI: 10.1016/j.jallcom.2010.12.152. http://dx.doi.org/10.1016/j.jallcom.2010.12.15210.1016/j.jallcom.2010.12.152Suche in Google Scholar

[89] Zita, J., Krysa, J., Černigoj, U., Lavrenčič-Štangar, U., Jirkovsky, J., & Rathousky, J. (2011). Photocatalytic properties of different TiO2 thin films of various porosity and titania loading. Catalysis Today, 161, 29–34. DOI: 10.1016/j.cattod.2010.11.084. http://dx.doi.org/10.1016/j.cattod.2010.11.08410.1016/j.cattod.2010.11.084Suche in Google Scholar

Published Online: 2012-4-5
Published in Print: 2012-5-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0144-4/pdf
Button zum nach oben scrollen