Startseite In-situ polymerized molecularly imprinted polymeric thin films used as sensing layers in surface plasmon resonance sensors: Mini-review focused on 2010–2011
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

In-situ polymerized molecularly imprinted polymeric thin films used as sensing layers in surface plasmon resonance sensors: Mini-review focused on 2010–2011

  • Sandrine Lépinay EMAIL logo , Khémara Kham , Marie-Claude Millot und Benjamin Carbonnier
Veröffentlicht/Copyright: 5. April 2012
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This review provides a short overview of polymeric thin films incorporating molecular imprints within their 3D macromolecular structure as synthetic recognition elements and prepared by in situ polymerization for surface plasmon resonance application. This review starts with a brief reminder of the principle of surface plasmon resonance detection. The second section is focused on molecularly imprinted materials. Bulk and thin film polymer formats can be obtained by free radical polymerization, where the functional monomer interacts specifically with the template and the cross-linker controls the rigidity of the imprinted cavities. Grafting polymerization is presented as a method of choice for covalent attachment of ultra-thin molecularly imprinted films on a surface plasmon resonance metallic substrate. Examples of electropolymerized thin films are also provided. In the rest of this contribution, surface plasmon resonance applications of molecularly imprinted polymers reported mainly over the last two years are presented with respect to the preparation mode. Also, applications of gold nanoparticle/molecularly imprinted polymer composites for the design of surface plasmon resonance-based sensors with enhanced sensitivity due to the phenomenon of localized surface plasmon resonance induced by the presence of gold nanoparticles are summarized.

[1] Abbas, A., Linman, M. J., & Cheng, Q. (2011). New trends in instrumental design for surface plasmon resonance-based biosensors. Biosensors and Bioelectronics, 26, 1815–1824. DOI: 10.1016/j.bios.2010.09.030. http://dx.doi.org/10.1016/j.bios.2010.09.03010.1016/j.bios.2010.09.030Suche in Google Scholar

[2] Abdulhalim, I., Zourob, M., & Lakhtakia, A. (2008). Surface plasmon resonance for biosensing: A mini-review. Electromagnetics, 28, 214–242. DOI: 10.1080/02726340801921650. http://dx.doi.org/10.1080/0272634080192165010.1080/02726340801921650Suche in Google Scholar

[3] Advincula, R. C. (2011). Engineering molecularly imprinted polymer (MIP) materials: Developments and challenges for sensing and separation technologies. Korean Journal of Chemical Engineering, 28, 1313–1321. DOI: 10.1007/s11814-011-0133-2. http://dx.doi.org/10.1007/s11814-011-0133-210.1007/s11814-011-0133-2Suche in Google Scholar

[4] Akkahat, P., & Hoven, V. P. (2011). Introducing surfacetethered poly(acrylic acid) brushes as 3D functional thin film for biosensing applications. Colloids and Surfaces B: Biointerfaces, 86, 198–205. DOI: 10.1016/j.colsurfb.2011.03.042. http://dx.doi.org/10.1016/j.colsurfb.2011.03.04210.1016/j.colsurfb.2011.03.042Suche in Google Scholar

[5] Arenas, L. F., Ebarvia, B. S., & Sevilla, F. B. (2010). Enantioselective piezoelectric quartz crystal sensor for dmethamphetamine based on a molecularly imprinted polymer. Analytical and Bioanalytical Chemistry, 397, 3155–3158. DOI: 10.1007/s00216-010-3865-7. http://dx.doi.org/10.1007/s00216-010-3865-710.1007/s00216-010-3865-7Suche in Google Scholar

[6] Ayela, C., Roquet, F., Valera, L., Granier, C., Nicu, L., & Pugni`ere, M. (2007). Antibody-antigen peptide interactions monitored by SPR and QCM-D: A model for SPR detection of IA-2 autoantibodies in human serum. Biosensors and Bioelectronics, 22, 3113–3119. DOI: 10.1016/j.bios.2007.01.020. http://dx.doi.org/10.1016/j.bios.2007.01.02010.1016/j.bios.2007.01.020Suche in Google Scholar

[7] Bassil, N., Maillart, E., Canva, M., Lévy, Y., Millot, M. C., Pissard, S., Narwa, R., & Goossens, M. (2003). One hundred spots parallel monitoring of DNA interactions by SPR imaging of polymer-functionalized surfaces applied to the detection of cystic fibrosis mutations. Sensors and Actuators B: Chemical, 94, 313–323. DOI: 10.1016/s0925-4005(03)00462-3. http://dx.doi.org/10.1016/S0925-4005(03)00462-310.1016/S0925-4005(03)00462-3Suche in Google Scholar

[8] Ben-Amram, Y., Riskin, M., & Willner, I. (2010). Selective and enantioselective analysis of mono- and disaccharides using surface plasmon resonance spectroscopy and imprinted boronic acid-functionalized Au nanoparticle composites. Analyst, 135, 2952–2959. DOI: 10.1039/c0an00268b. http://dx.doi.org/10.1039/c0an00268b10.1039/c0an00268bSuche in Google Scholar PubMed

[9] Banerji, S., Peng, W., Kim, Y. C., & Booksh, K. S. (2010). Chemically responsive hydrogel with nanoparticle enhanced detection for small biomolecules. Proceedings of SPIE, 7674, 76740A. DOI: 10.1117/12.854610. http://dx.doi.org/10.1117/12.85461010.1117/12.854610Suche in Google Scholar

[10] Bernand-Mantel, D., Chehimi, M. M., Millot, M. C., & Carbonnier, B. (2010). Protein-functionalized ultrathin glycidyl methacrylate polymer grafts on gold for the development of optical biosensors: an SPR investigation. Surface and Interface Analysis, 42, 1035–1040. DOI: 10.1002/sia.3469. http://dx.doi.org/10.1002/sia.346910.1002/sia.3469Suche in Google Scholar

[11] Beseničar, M., Maček, P., Lakey, J. H., & Anderluh, G. (2006). Surface plasmon resonance in protein-membrane interactions. Chemistry and Physics of Lipids, 141, 169–178. DOI: 10.1016/j.chemphyslip.2006.02.010. http://dx.doi.org/10.1016/j.chemphyslip.2006.02.01010.1016/j.chemphyslip.2006.02.010Suche in Google Scholar PubMed

[12] Bompart, M., De Wilde, Y., & Haupt, K. (2010). Chemical nanosensors based on composite molecularly imprinted polymer particles and surface-enhanced Raman scattering. Advanced Materials, 22, 2243–2348. DOI: 10.1002/adma.200904442. http://dx.doi.org/10.1002/adma.20090444210.1002/adma.200904442Suche in Google Scholar PubMed

[13] Bonini, F., Piletsky, S., Turner, A. P. F., Speghini, A., & Bossi, A. (2007). Surface imprinted beads for the recognition of human serum albumin. Biosensors and Bioelectronics, 22, 2322–2328. DOI: 10.1016/j.bios.2006.12.034. http://dx.doi.org/10.1016/j.bios.2006.12.03410.1016/j.bios.2006.12.034Suche in Google Scholar PubMed

[14] Bossi, A., Bonini, F., Turner, A. P. F., & Piletsky, S. A. (2007). Molecularly imprinted polymers for the recognition of proteins: The state of the art. Biosensors and Bioelectronics, 22, 1131–1137. DOI: 10.1016/j.bios.2006.06.023. http://dx.doi.org/10.1016/j.bios.2006.06.02310.1016/j.bios.2006.06.023Suche in Google Scholar PubMed

[15] Chegel, V., Whitcombe, M. J., Turner, N. W., & Piletsky, S. A. (2009). Deposition of functionalized polymer layers in surface plasmon resonance immunosensors by in-situ polymerization in the evanescent wave field. Biosensors and Bioelectronics, 24, 1270–1275. DOI: 10.1016/j.bios.2008.07.059. http://dx.doi.org/10.1016/j.bios.2008.07.05910.1016/j.bios.2008.07.059Suche in Google Scholar PubMed

[16] Choi, S. W., Chang, H. J., Lee, N., Kim, J. H., & Chun, H. S. (2009). Detection of mycoestrogen zearalenone by a molecularly imprinted polypyrrole-based surface plasmon resonance (SPR) sensor. Journal of Agricultural and Food Chemistry, 57, 1113–1118. DOI: 10.1021/jf804022p. http://dx.doi.org/10.1021/jf804022p10.1021/jf804022pSuche in Google Scholar PubMed

[17] David, C., Hervé, F., Sébille, B., Canva, M., & Millot, M. C. (2006). The reversible binding of immunoglobulins G modified with adamantyl-end-capped poly(ethylene glycol)s to poly-β-cyclodextrin-coated gold surfaces and their interactions with specific target molecules: A surface plasmon resonance investigation. Sensors and Actuators B: Chemical, 114, 869–880. DOI: 10.1016/j.snb.2005.08.006. http://dx.doi.org/10.1016/j.snb.2005.08.00610.1016/j.snb.2005.08.006Suche in Google Scholar

[18] Dutta, P., Pernites, R. B., Danda, C., & Advincula, R. C. (2011). SPR detection of dopamine using cathodically electropolymerized, molecularly imprinted poly-p-aminostyrene thin films. Macromolecular Chemistry and Physics, 212, 2439–2451. DOI: 10.1002/macp.201100365. http://dx.doi.org/10.1002/macp.20110036510.1002/macp.201100365Suche in Google Scholar

[19] Fang, S., Lee, H. J., Wark, A. W., & Corn, R. M. (2006). Attomole microarray detection of microRNAs by nanoparticleamplified SPR imaging measurements of surface polyadenylation reactions. Journal of the American Chemical Society, 128, 14044–14046. DOI: 10.1021/ja065223p. http://dx.doi.org/10.1021/ja065223p10.1021/ja065223pSuche in Google Scholar PubMed PubMed Central

[20] Frasconi, M., Tel-Vered, R., Riskin, M., & Willner, I. (2010). Surface plasmon resonance analysis of antibiotics using imprinted boronic acid-functionalized Au nanoparticle composites. Analytical Chemistry, 82, 2512–2519. DOI: 10.1021/ac902944k. http://dx.doi.org/10.1021/ac902944k10.1021/ac902944kSuche in Google Scholar PubMed

[21] Fuchs, Y., Linares, A. V., Mayes, A. G., Haupt, K., & Soppera, O. (2011). Ultrathin selective molecularly imprinted polymer microdots obtained by evanescent wave photopolymerization. Chemistry of Materials, 23, 3645–3651. DOI:10.1021/cm2009829. http://dx.doi.org/10.1021/cm200982910.1021/cm2009829Suche in Google Scholar

[22] Galandová, J., & Labuda, J. (2009). Polymer interfaces used in electrochemical DNA-based biosensors. Chemical Papers, 63, 1–14. DOI: 10.2478/s11696-008-0083-2. http://dx.doi.org/10.2478/s11696-008-0083-210.2478/s11696-008-0083-2Suche in Google Scholar

[23] Gam-Derouich, S., Nguyen, M. N., Madani, A., Maouche, N., Lang, P., Perruchot, C., & Chehimi, M. M. (2010). Aryl diazonium salt surface chemistry and ATRP for the preparation of molecularly imprinted polymer grafts on gold substrates. Surface and Interface Analysis, 42, 1050–1056. DOI:10.1002/sia.3210. http://dx.doi.org/10.1002/sia.321010.1002/sia.3210Suche in Google Scholar

[24] Gao, S., & Koshizaki, N. (2011). Recent developments and applications of hybrid surface plasmon resonance interfaces in optical sensing. Analytical and Bioanalytical Chemistry, 399, 91–101. DOI: 10.1007/s00216-010-4276-5. http://dx.doi.org/10.1007/s00216-010-4276-510.1007/s00216-010-4276-5Suche in Google Scholar

[25] Gupta, G., Bhaskar, A. S. B., Tripathi, B. K., Pandey, P., Boopathi, M., Lakshmana Rao, P. V., Singh, B., & Vijayaraghavan, R. (2011). Supersensitive detection of T-2 toxin by the in situ synthesized π-conjugated molecularly imprinted nanopatterns. An in situ investigation by surface plasmon resonance combined with electrochemistry. Biosensors and Bioelectronics, 26, 2534–2540. DOI: 10.1016/j.bios.2010.10.050. 10.1016/j.bios.2010.10.050Suche in Google Scholar

[26] Gupta, G., Singh, P. K., Boopathi, M., Kamboj, D. V., Singh, B., & Vijayaraghavan, R. (2010). Molecularly imprinted polymer for the recognition of biological warfare agent staphylococcal enterotoxin B based on surface plasmon resonance. Thin Solid Films, 519, 1115–1121. DOI: 10.1016/j.tsf.2010.08.054. http://dx.doi.org/10.1016/j.tsf.2010.08.05410.1016/j.tsf.2010.08.054Suche in Google Scholar

[27] Hao, H. X., Zhou, H., Chang, J., Zhu, J., & Wei, T. X. (2011). Molecularly imprinted polymers for highly sensitive detection of morphine using surface plasmon resonance spectroscopy. Chinese Chemical Letters, 27, 477–480. DOI: 10.1016/j.cclet.2010.11.004. http://dx.doi.org/10.1016/j.cclet.2010.11.00410.1016/j.cclet.2010.11.004Suche in Google Scholar

[28] He, J. X., Fang, G. Z., Yao, Y. C., & Wang, S. (2010). Preparation and characterization of molecularly imprinted silica monolith for screening sulfamethazine. Journal of Separation Science, 33, 3263–3271. DOI: 10.1002/jssc.200900650. http://dx.doi.org/10.1002/jssc.20090065010.1002/jssc.200900650Suche in Google Scholar

[29] Henry, O. Y. F., Cullen, D. C., & Piletsky, S. A. (2005). Optical interrogation of molecularly imprinted polymers and development of MIP sensors: a review. Analytical and Bioanalytical Chemistry, 382, 947–956. DOI: 10.1007/s00216-005-3255-8. http://dx.doi.org/10.1007/s00216-005-3255-810.1007/s00216-005-3255-8Suche in Google Scholar

[30] Homola, J., Yee, S. S., & Gauglitz, G. (1999). Surface plasmon resonances sensors: review. Sensors and Actuators B: Chemical, 54, 3–15. DOI: 10.1016/s0925-4005(98)00321-9. http://dx.doi.org/10.1016/S0925-4005(98)00321-910.1016/S0925-4005(98)00321-9Suche in Google Scholar

[31] Huang, Y. P., Zheng, C., & Liu, Z. S. (2011). Molecularly imprinted polymers for the separation of organic compounds in capillary electrochromatography. Current Organic Chemistry, 15, 1863–1870. DOI: 10.2174/138527211795656651. 10.2174/138527211795656651Suche in Google Scholar

[32] Islam, M. S., Kouzani, A. Z., Dai, X. J., Michalski, W. P. (2011). Investigation of the effects of design parameters on sensitivity of surface plasmon resonance biosensors. Biomedical Signal Processing and Control, 6, 147–156. DOI: 10.1016/j.bspc.2010.11.005. http://dx.doi.org/10.1016/j.bspc.2010.11.00510.1016/j.bspc.2010.11.005Suche in Google Scholar

[33] Kempe, H., & Kempe, M. (2004). Novel method for the synthesis of molecularly imprinted polymer bead libraries. Macromolecular Rapid Communications, 25, 315–320. DOI: 10.1002/marc.200300189. http://dx.doi.org/10.1002/marc.20030018910.1002/marc.200300189Suche in Google Scholar

[34] Kim, S., Lee, J., Lee, S. J., & Lee, H. J. (2010). Ultra-sensitive detection of IgE using biofunctionalized nanoparticle-enhan ced SPR. Talanta, 81, 1755–1759. DOI: 10.1016/j.talanta.2010.03.036. http://dx.doi.org/10.1016/j.talanta.2010.03.03610.1016/j.talanta.2010.03.036Suche in Google Scholar PubMed

[35] Kretschmann, E., & Raether, H. (1968). Radiative decay of non radiative surface plasmons excited by light (surface plasma waves excitation by light and decay into photons applied to nonradiative modes. Zeitschrift für Naturforschung Teil A, 23A, 2135–2136. DOI: 10.1088/0022-3719/10/3/010. 10.1088/0022-3719/10/3/010Suche in Google Scholar

[36] Kuo, W. K., & Chang, C. H. (2010). Phase detection properties of grating-coupled surface plasmon resonance sensors. Optics Express, 18, 19656–19664. DOI: 10.1364/oe.18.019656. http://dx.doi.org/10.1364/OE.18.01965610.1364/OE.18.019656Suche in Google Scholar PubMed

[37] Li, X., & Husson, S. M. (2006). Adsorption of dansylated amino acids on molecularly imprinted surfaces: A surface plasmon resonance study. Biosensors and Bioelectronics, 22, 336–348. DOI: 10.1016/j.bios.2006.04.016. http://dx.doi.org/10.1016/j.bios.2006.04.01610.1016/j.bios.2006.04.016Suche in Google Scholar PubMed

[38] Linares, A. V., Vandevelde, F., Pantigny, J., Falcimaigne-Cordin, A., & Haupt, K. (2009). Polymer films composed of surface-bound nanofilaments with a high aspect ratio, molecularly imprinted with small molecules and proteins. Advanced Functional Materials, 8, 1299–1303. DOI: 10.1002/adfm.200801222. http://dx.doi.org/10.1002/adfm.20080122210.1002/adfm.200801222Suche in Google Scholar

[39] Lotierzo, M., Henry, O. Y. F., Piletsky, S., Tothill, I., Cullen, D., Kania, M., Hock, B., & Turner, A. P. F. (2004). Surface plasmon resonance sensor for domoic acid based on grafted imprinted polymer. Biosensors and Bioelectronics, 20, 145–152. DOI: 10.1016/j.bios.2004.01.032. http://dx.doi.org/10.1016/j.bios.2004.01.03210.1016/j.bios.2004.01.032Suche in Google Scholar PubMed

[40] Luo, X., Deng, F., Luo, S., Tu, X., & Yang, L. (2011). Grafting of molecularly imprinted polymers from the surface of Fe3O4 nanoparticles containing double bond via suspension polymerization in aqueous environment: A selective sorbent for theophylline. Journal of Applied Polymer Science, 121, 1930–1937. DOI: 10.1002/app.33710. http://dx.doi.org/10.1002/app.3371010.1002/app.33710Suche in Google Scholar

[41] Malitesta, C., Losito, I., & Zambonin, P. G. (1999). Molecularly imprinted electrosynthesized polymers: New materials for biomimetic sensors. Analytical Chemistry, 71, 1366–1370. DOI: 10.1021/ac980674g. http://dx.doi.org/10.1021/ac980674g10.1021/ac980674gSuche in Google Scholar

[42] Mannelli, I., Lecerf, L., Guerrouache, M., Goossens, M., Millot, M. C., & Canva, M. (2007). DNA immobilisation procedures for surface plasmon resonance imaging (SPRI) based microarray systems. Biosensors and Bioelectronics, 22, 803–809. DOI: 10.1016/j.bios.2006.02.022. http://dx.doi.org/10.1016/j.bios.2006.02.02210.1016/j.bios.2006.02.022Suche in Google Scholar

[43] Matsui, J., Akamatsu, K., Hara, N., Miyoshi, D., Nawafune, H., Tamaki, K., & Sugimoto, N. (2005). SPR sensor chip for detection of small molecules using molecularly imprinted polymer with embedded gold nanoparticles. Analytical Chemistry, 77, 4282–4285. DOI: 10.1021/ac050227i. http://dx.doi.org/10.1021/ac050227i10.1021/ac050227iSuche in Google Scholar

[44] Matsui, J., Akamatsu, K., Nishiguchi, S., Miyoshi, D., Nawafune, H., Tamaki, K., & Sugimoto, N. (2004). Composite of Au nanoparticles and molecularly imprinted polymer as a sensing material. Analytical Chemistry, 76, 1310–1315. DOI: 10.1021/ac034788q. http://dx.doi.org/10.1021/ac034788q10.1021/ac034788qSuche in Google Scholar

[45] Matsunaga, T., Hishiya, T., & Takeuchi, T. (2007). Surface plasmon resonance sensor for lysozyme based on molecularly imprinted thin films. Analytica Chimica Acta, 591, 63–67. DOI: 10.1016/j.aca.2007.02.072. http://dx.doi.org/10.1016/j.aca.2007.02.07210.1016/j.aca.2007.02.072Suche in Google Scholar

[46] Mayes, A. G., & Whitcombe, M. J., (2005). Synthetic strategies for the generation of molecularly imprinted organic polymers. Advanced Drug Delivery Review, 57, 1742–1778. DOI: 10.1016/j.addr.2005.07.011. http://dx.doi.org/10.1016/j.addr.2005.07.01110.1016/j.addr.2005.07.011Suche in Google Scholar

[47] Medina-Castillo, A. L., Mistlberger, G., Fernandez-Sanchez, J. F., Segura-Carretero, A., Klimant, I., & Fernandez-Gutierrez, A. (2010). Novel strategy to design magnetic, molecular imprinted polymers with well-controlled structure for the application in optical sensors. Macromolecules, 43, 55–61. DOI: 10.1021/ma902095s. http://dx.doi.org/10.1021/ma902095s10.1021/ma902095sSuche in Google Scholar

[48] Millot, M. C., Martin, F., Bousquet, D., Sébille, B., & Lévy, Y. (1995). A reactive macromolecular matrix for protein immobilization on a gold surface. Application in surface plasmon resonance. Sensors and Actuators B: Chemical, 29, 268–273. DOI: 10.1016/0925-4005(95)01693-7. http://dx.doi.org/10.1016/0925-4005(95)01693-710.1016/0925-4005(95)01693-7Suche in Google Scholar

[49] Otto, A. (1968). Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik, 216, 398–410. DOI: 10.1007/bf01391532. http://dx.doi.org/10.1007/BF0139153210.1007/BF01391532Suche in Google Scholar

[50] Panasyuk, T., Dall’Orto, V. C., Marrazza, G., El’skaya, A., Piletsky, S., Rezzano, I., & Mascini, M. (1998). Molecular imprinted polymers prepared by electropolymerization of Ni-(protoporphyrin IX). Analytical Letters, 31, 1809–1824. DOI: 10.1080/00032719808005264. http://dx.doi.org/10.1080/0003271980800526410.1080/00032719808005264Suche in Google Scholar

[51] Panasyuk-Delaney, T., Mirsky, V. M., Ulbricht, M., & Wolfbeis, O. S. (2001). Impedometric herbicide chemosensors based on molecularly imprinted polymers. Analytica Chimica Acta, 435, 157–162. DOI: 10.1016/s0003-2670(00)01280-0. http://dx.doi.org/10.1016/S0003-2670(00)01280-010.1016/S0003-2670(00)01280-0Suche in Google Scholar

[52] Pardieu, E., Cheap, H., Vedrine, C., Lazerges, M., Lattach, Y., Garnier, F., Remita, S., & Pernelle, C. (2009). Molecularly imprinted conducting polymer based electrochemical sensor for detection of atrazine. Analytica Chimica Acta, 649, 236–245. DOI: 10.1016/j.aca.2009.07.029. http://dx.doi.org/10.1016/j.aca.2009.07.02910.1016/j.aca.2009.07.029Suche in Google Scholar PubMed

[53] Pernites, R., Ponnapati, R., Felipe, M. J., & Advincula, R. (2011). Electropolymerization molecularly imprinted polymer (E-MIP) SPR sensing of drug molecules: Pre-polymerization complexed terthiophene and carbazole electroactive monomers. Biosensors and Bioelectronics, 26, 2766–2771. DOI: 10.1016/j.bios.2010.10.027. http://dx.doi.org/10.1016/j.bios.2010.10.02710.1016/j.bios.2010.10.027Suche in Google Scholar PubMed

[54] Piletsky, S. A., Matuschewski, H., Schedler, U., Wilpert, A., Piletska, E. V., Thiele, T. A., & Ulbricht, M. (2000). Surface functionalization of porous polypropylene membranes with molecularly imprinted polymers by photograft copolymerization in water. Macromolecules, 33, 3092–3098. DOI: 10.1021/ma991087f. http://dx.doi.org/10.1021/ma991087f10.1021/ma991087fSuche in Google Scholar

[55] Quaglia, M., De Lorenzi, E., Sulitzky, C., Massolini, G., & Sellergren, B. (2001). Surface initiated molecularly imprinted polymer films: a new approach in chiral capillary electrochromatography. Analyst, 126, 1495–1498. DOI: 10.1039/b105401p. http://dx.doi.org/10.1039/b105401p10.1039/b105401pSuche in Google Scholar

[56] Riskin, M., Ben-Amram, Y., Tel-Vered, R., Chegel, V., Almog, J., & Willner, I. (2011). Molecularly imprinted Au nanoparticles composites on Au surfaces for the surface plasmon resonance detection of pentaerythritol tetranitrate, nitroglycerin, and ethylene glycol dinitrate. Analytical Chemistry, 83, 3082–3088. DOI: 10.1021/ac1033424. http://dx.doi.org/10.1021/ac103342410.1021/ac1033424Suche in Google Scholar PubMed

[57] Riskin, M., Tel-Vered, R., Frasconi, M., Yavo, N., & Willner, I. (2010a). Stereoselective and chiroselective surface plasmon resonance (SPR) analysis of amino acids by molecularly imprinted Au-nanoparticle composites. Chemistry-A European Journal, 16, 7114–7120. DOI: 10.1002/chem.200903215. 10.1002/chem.200903215Suche in Google Scholar PubMed

[58] Riskin, M., Tel-Vered, R., Lioubashevski, O., & Willner, I. (2009). Ultrasensitive surface plasmon resonance detection of trinitrotoluene by a bis-aniline-cross-linked Au nanoparticles composite. Journal of the American Chemical Society, 131, 7368–7378. DOI: 10.1021/ja9001212. http://dx.doi.org/10.1021/ja900121210.1021/ja9001212Suche in Google Scholar PubMed

[59] Riskin, M., Tel-Vered, R., & Willner, I. (2010b). Imprinted Aunanoparticle composites for the ultrasensitive surface plasmon resonance detection of hexahydro-1,3,5-trinitro-1,3,5- triazine (RDX). Advanced Materials, 22, 1387–1391. DOI: 10.1002/adma.200903007. http://dx.doi.org/10.1002/adma.20090300710.1002/adma.200903007Suche in Google Scholar PubMed

[60] Roh, S., Chung, T., & Lee, B. (2011). Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors. Sensors, 11, 1565–1588. DOI: 10.3390/s110201565. http://dx.doi.org/10.3390/s11020156510.3390/s110201565Suche in Google Scholar PubMed PubMed Central

[61] Rückert, B., Hall, A. J., & Sellergren, B. (2002). Molecularly imprinted composite materials via iniferter-modified supports. Journals of Materials Chemistry, 12, 2275–2280. DOI: 10.1039/b203115a. http://dx.doi.org/10.1039/b203115a10.1039/B203115ASuche in Google Scholar

[62] Santillán, J. M. J., Scaffardi, L. B., Schinca, D. C., & Videla, F. A. (2010). Determination of nanometric Ag2O film thickness by surface plasmon resonance and optical waveguide mode coupling techniques. Journal of Optics, 12, 045002. DOI: 10.1088/2040-8978/12/4/045002. http://dx.doi.org/10.1088/2040-8978/12/4/04500210.1088/2040-8978/12/4/045002Suche in Google Scholar

[63] Schmidt, R. H., Mosbach, K., & Haupt, K. (2004). A simple method for spin-coating molecularly imprinted polymer films of controlled thickness and porosity. Advanced Materials, 16, 719–722. DOI: 10.1002/adma.200306374. http://dx.doi.org/10.1002/adma.20030637410.1002/adma.200306374Suche in Google Scholar

[64] Schweitz, L. (2002). Molecularly imprinted polymer coatings for open-tubular capillary electrochromatography prepared by surface initiation. Analytical Chemistry, 74, 1192–1196. DOI: 10.1021/ac0156520. http://dx.doi.org/10.1021/ac015652010.1021/ac0156520Suche in Google Scholar

[65] Sellergren, B. (2001). Imprinted chiral stationary phases in high-performance liquid chromatography. Journal of Chromatography A, 906, 227–252. DOI: 10.1016/s0021-9673(00) 00929-8. http://dx.doi.org/10.1016/S0021-9673(00)00929-810.1016/S0021-9673(00)00929-8Suche in Google Scholar

[66] Sharma, A. K., Jha, R., & Gupta, B. D. (2007). Fiber-optic sensors based on surface plasmon resonance: A comprehensive review. IEEE Sensors Journal, 7, 1118–1129. DOI: 10.1109/jsen.2007.897946. http://dx.doi.org/10.1109/JSEN.2007.89794610.1109/JSEN.2007.897946Suche in Google Scholar

[67] Shimizu, K. D., & Stephenson, C. J. (2010). Molecularly imprinted polymer sensor arrays. Current Opinion in Chemical Biology, 14, 743–750. DOI: 10.1016/j.cbpa.2010.07.007. http://dx.doi.org/10.1016/j.cbpa.2010.07.00710.1016/j.cbpa.2010.07.007Suche in Google Scholar PubMed

[68] Song, W., Chen, Y., Xu, J., Yang, X. R., & Tian, D. B. (2010). Dopamine sensor based on molecularly imprinted electrosynthesized polymers. Journal of Solid State Electrochemistry, 14, 1909–1914. DOI: 10.1007/s10008-010-1025-9. http://dx.doi.org/10.1007/s10008-010-1025-910.1007/s10008-010-1025-9Suche in Google Scholar

[69] Srivastava, S. K., Verma, R., & Gupta, B. D. (2011). Surface plasmon resonance based fiber optic sensor for the detection of low water content in ethanol. Sensors and Actuators B: Chemical, 153, 194–198. DOI: 10.1016/j.snb.2010.10.038. http://dx.doi.org/10.1016/j.snb.2010.10.03810.1016/j.snb.2010.10.038Suche in Google Scholar

[70] Sulitzky, C., Rückert, B., Hall, A. J., Lanza, F., Unger, K., & Sellergren, B. (2002). Grafting of molecularly imprinted polymer films on silica supports containing surface-bound free radical initiators. Macromolecules, 35, 79–91. DOI: 10.1021/ma011303w. http://dx.doi.org/10.1021/ma011303w10.1021/ma011303wSuche in Google Scholar

[71] Sunayama, H., Ooya, T., & Takeuchi, T. (2010). Fluorescent protein recognition polymer thin films capable of selective signal transduction of target binding events prepared by molecular imprinting with a post-imprinting treatment. Biosensors and Bioelectronics, 26, 458–462. DOI: 10.1016/j.bios.2010.07.091. http://dx.doi.org/10.1016/j.bios.2010.07.09110.1016/j.bios.2010.07.091Suche in Google Scholar PubMed

[72] Suryanarayanan, V., Wu, C. T., & Ho, K. C. (2010). Molecularly imprinted electrochemical sensors. Electroanalysis, 22, 1795–1811. DOI: 10.1002/elan.200900616. http://dx.doi.org/10.1002/elan.20090061610.1002/elan.200900616Suche in Google Scholar

[73] Tse Sum Bui, B., & Haupt, K. (2010). Molecularly imprinted polymers: synthetic receptors in bioanalysis. Analytical and Bioanalytical Chemistry, 398, 2481–2492. DOI: 10.1007/s00216-010-4158-x. http://dx.doi.org/10.1007/s00216-010-4158-x10.1007/s00216-010-4158-xSuche in Google Scholar PubMed

[74] Turiel, E., & Martin-Esteban, A. (2004). Molecularly imprinted polymers: towards highly selective stationary phases in liquid chromatography end capillary electrophoresis. Analytical and Bioanalytical Chemistry, 378, 1876–1886. DOI: 10.1007/s00216-003-2331-1. http://dx.doi.org/10.1007/s00216-003-2331-110.1007/s00216-003-2331-1Suche in Google Scholar PubMed

[75] Turiel, E., & Martín-Esteban, A. (2010). Molecularly imprinted polymers for sample preparation: A review. Analytica Chimica Acta, 668, 87–99. DOI: 10.1016/j.aca.2010.04.019. http://dx.doi.org/10.1016/j.aca.2010.04.01910.1016/j.aca.2010.04.019Suche in Google Scholar PubMed

[76] Uludağ, Y., Piletsky, S. A., Turner, A. P. F., & Cooper, M. A. (2007). Piezoelectric sensors based on molecular imprinted polymers for detection of low molecular mass analytes. FEBS Journal, 274, 5471–5480. DOI: 10.1111/j.1742-4658.2007.06079.x. http://dx.doi.org/10.1111/j.1742-4658.2007.06079.x10.1111/j.1742-4658.2007.06079.xSuche in Google Scholar PubMed

[77] Verheyen, E., Schillemans, J. P., van Wijk, M., Demeniex, M. A., Hennink, W. E., & van Nostrum, C. F. (2011). Challenges for the effective molecular imprinting of proteins. Biomaterials, 32, 3008–3020. DOI: 10.1016/j.biomaterials.2011.01.007. http://dx.doi.org/10.1016/j.biomaterials.2011.01.00710.1016/j.biomaterials.2011.01.007Suche in Google Scholar PubMed

[78] Wei, X., Li, X., & Husson, S. M. (2005). Surface molecular imprinting by atom transfer radical polymerization. Biomacromolecules, 6, 1113–1121. DOI: 10.1021/bm049311i. http://dx.doi.org/10.1021/bm049311i10.1021/bm049311iSuche in Google Scholar PubMed

[79] Wei, C., Zhou, H., & Zhou, J. (2011a). Ultrasensitively sensing acephate using molecular imprinting techniques on a surface plasmon resonance sensor. Talanta, 83, 1422–1427. DOI: 10.1016/j.talanta.2010.11.034. http://dx.doi.org/10.1016/j.talanta.2010.11.03410.1016/j.talanta.2010.11.034Suche in Google Scholar PubMed

[80] Wei, Q. Q., & Wei, T. X. (2011b). A novel method to prepare SPR sensor chips based on photografting molecularly imprinted polymer. Chinese Chemical Letters, 22, 721–724. DOI: 10.1016/j.cclet.2010.11.024. http://dx.doi.org/10.1016/j.cclet.2010.11.02410.1016/j.cclet.2010.11.024Suche in Google Scholar

[81] Wei, Q. Q., Wei, T. X., & Pei, X. F. (2011c). Novel method for in situ monitoring the polymerization process of molecularly imprinted films by surface plasmon resonance. Chemical Journal of Chinese Universities, 32, 204–206. Suche in Google Scholar

[82] Wei, Q., Wei, T., & Wu, X. (2011d). Ultrasensitive and highly selective detection of testosterone using a surface plasmon resonance sensor combined with molecularly imprinted films. Chemistry Letters, 40, 132–133. DOI: 10.1246/cl.2011.132. http://dx.doi.org/10.1246/cl.2011.13210.1246/cl.2011.132Suche in Google Scholar

[83] Whitcombe, M. J., Chianella, I., Larcombe, L., Piletsky, S. A., Noble, J., Porter, R., & Horgan, A. (2011). The rational development of molecularly imprinted polymer-based sensors for protein detection. Chemical Society Reviews, 40, 1547–1571. DOI: 10.1039/c0cs00049c. http://dx.doi.org/10.1039/c0cs00049c10.1039/C0CS00049CSuche in Google Scholar

[84] Wulff, G. (1995). Molecular imprinting in cross-linked materials with the aid of molecular template—A way towards artificial antibodies. Angewandte Chemie International Edition, 34, 1812–1832. DOI: 10.1002/anie.199518121. http://dx.doi.org/10.1002/anie.19951812110.1002/anie.199518121Suche in Google Scholar

[85] Zhang, S. W., Xing, J., Cai, L. S., & Wu, C. Y. (2009). Molecularly imprinted monolith in-tube solid-phase microextraction coupled with HPLC/UV detection for determination of 8-hydroxy-2’-deoxyguanosine in urine. Analytical and Bioanalytical Chemistry, 395, 479–487. DOI: 10.1007/s00216-009- 2964-9. http://dx.doi.org/10.1007/s00216-009-2964-910.1007/s00216-009-2964-9Suche in Google Scholar PubMed

[86] Zheng, M. M., Gong, R., Zhao, X., & Feng, Y. Q. (2010). Selective sample pretreatment by molecularly imprinted polymer monolith for the analysis of fluoroquinolones from milk samples. Journal of Chromatography A, 1217, 2075–2081. DOI: 10.1016/j.chroma.2010.02.011. http://dx.doi.org/10.1016/j.chroma.2010.02.01110.1016/j.chroma.2010.02.011Suche in Google Scholar PubMed

Published Online: 2012-4-5
Published in Print: 2012-5-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0134-6/html?lang=de
Button zum nach oben scrollen