Startseite Role of interfacial chemistry on the rheology and thermo-mechanical properties of clay-polymer nanocomposites for building applications
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Role of interfacial chemistry on the rheology and thermo-mechanical properties of clay-polymer nanocomposites for building applications

  • Hieu-Thao Huynh EMAIL logo , Karim Benzarti und Myriam Duc
Veröffentlicht/Copyright: 5. April 2012
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This study is directed towards investigating the role of the surface treatment of clay particles on the rheological and thermomechanical behaviour of clay-epoxy blends. Nanocomposites were prepared by mixing small amounts (5–10 mass %) of commercial organoclays or raw clays with an epoxy system commonly used in civil engineering. Rheological characterisations in the liquid state revealed a pronounced thixotropic character of the organoclay-based systems, which all exhibited a shear-thinning behaviour above a critical stress threshold (yield stress), depending on both the intensity of interfacial interactions and the degree of filler dispersion. On the other hand, systems based on raw clay particles behaved like Newtonian fluids, in the same way as the unreinforced polymer matrix. Complementary dynamic mechanical analyses (DMA) performed on the cured cross-linked nanocomposites also showed significant changes in the viscoelastic behaviour of the epoxy matrix due to the introduction of organoclays, whereas only minor variations were observed following the introduction of raw fillers. These results were consistent with nanoscale morphological characterisations performed by conventional X-ray diffraction (XRD) on the various hybrid systems. In this context, rheology and DMA appear as attractive alternative methods for assessing the filler dispersion at a macroscopic (and possibly more relevant) scale. This research is of practical interest for civil engineers, since clay reinforced-epoxies could in the future be used as coating materials with enhanced barrier performances, in order to protect infrastructures against environmental ageing or corrosion.

[1] Ahmed, A., & Kodur, V. K. R. (2011). Effect of bond degradation on fire resistance of FRP-strengthened reinforced concrete beams. Composites Part B: Engineering, 42, 226–237. DOI: 10.1016/j.compositesb.2010.11.004. http://dx.doi.org/10.1016/j.compositesb.2010.11.00410.1016/j.compositesb.2010.11.004Suche in Google Scholar

[2] Almusallam, A. A., Khan, F. M., Dulaijan, S. U., & Al-Amoudi, O. S. B. (2003). Effectiveness of surface coatings in improving concrete durability. Cement and Concrete Composites, 25, 473–481. DOI: 10.1016/s0958-9465(02)00087-2. http://dx.doi.org/10.1016/S0958-9465(02)00087-210.1016/S0958-9465(02)00087-2Suche in Google Scholar

[3] Almusallam, A., Khan, F. M., & Maslehuddin, M. (2002). Performance of concrete coating under varying exposure conditions. Materials and Structures, 35, 487–494. DOI: 10.1007/bf02483136. http://dx.doi.org/10.1007/BF0248313610.1007/BF02483136Suche in Google Scholar

[4] Benzarti, K., Chataigner, S., Quiertant, M., Marty, C., & Aubagnac, C. (2011). Accelerated ageing behaviour of the adhesive bond between concrete specimens and CFRP overlays. Construction and Building Materials, 25, 523–538. DOI: 10.1016/j.conbuildmat.2010.08.003. http://dx.doi.org/10.1016/j.conbuildmat.2010.08.00310.1016/j.conbuildmat.2010.08.003Suche in Google Scholar

[5] Brown, J., Rhoney, I., & Pethrick, R. A. (2004). Epoxy resin based nanocomposites: 1. Diglycidylether of bisphenol A (DGEBA) with triethylenetetramine (TETA). Polymer International, 53, 2130–2137. DOI: 10.1002/pi.1638. http://dx.doi.org/10.1002/pi.163810.1002/pi.1638Suche in Google Scholar

[6] Corcione, C. E., Frigione, M., & Acierno, D. (2009). Rheological characterization of UV-curable epoxy systems: Effects of o-Boehmite nanofillers and a hyperbranched polymeric modifier. Journal of Applied Polymer Science, 112, 1302–1310. DOI: 10.1002/app.29603. http://dx.doi.org/10.1002/app.2960310.1002/app.29603Suche in Google Scholar

[7] Corcione, C. E., Cavallo, A., Pesce, E., Greco, A., & Maffezzoli, A. (2011). Evaluation of the degree of dispersion of nanofillers by mechanical, rheological, and permeability analysis. Polymer Engineering & Science, 51, 1280–1285. DOI: 10.1002/pen.21929. http://dx.doi.org/10.1002/pen.2192910.1002/pen.21929Suche in Google Scholar

[8] Coussot, P., Nguyen, Q. D., Huynh, H. T., & Bonn, D. (2002). Avalanche behavior in yield stress fluids. Physical Review Letters, 88, 175551. DOI: 10.1103/PhysRevLett.88.175501. 10.1103/PhysRevLett.88.175501Suche in Google Scholar PubMed

[9] Djouani, F., Herbst, F., Chehimi, M. M., & Benzarti, K. (2010). Preparation of exfoliated clay/polymer nanocomposites via organosilane grafting and in situ ATRP of glycidyl methacrylate. Surface and Interface Analysis, 42, 1019–1024. DOI: 10.1002/sia.3259. http://dx.doi.org/10.1002/sia.325910.1002/sia.3259Suche in Google Scholar

[10] Djouani, F., Herbst, F., Chehimi, M. M., & Benzarti, K. (2011). Synthesis, characterization and reinforcing properties of novel, reactive clay/poly(glycidyl methacrylate) nanocomposites. Construction and Building Materials, 25, 424–431. DOI: 10.1016/j.conbuildmat.2010.01.003. http://dx.doi.org/10.1016/j.conbuildmat.2010.01.00310.1016/j.conbuildmat.2010.01.003Suche in Google Scholar

[11] Durmus, A., Kasgoz, A., & Macosko, C. W. (2007). Linear low density polyethylene (LLDPE)/clay nanocomposites. Part I: Structural characterization and quantifying clay dispersion by melt rheology. Polymer, 48, 4492–4502. DOI: 10.1016/j.polymer.2007.05.074. 10.1016/j.polymer.2007.05.074Suche in Google Scholar

[12] Ferroir, T., Huynh, H. T., Château, X., & Coussot, P. (2004). Motion of solid object through a pasty (thixotropic) fluid. Physics of Fluids, 16, 594–601. DOI: 10.1063/1.1640372. http://dx.doi.org/10.1063/1.164037210.1063/1.1640372Suche in Google Scholar

[13] Gamage, J. C. P. H., Al-Mahaidi, R., & Wong, M. B. (2006). Bond characteristics of CFRP plated concrete members under elevated temperatures. Composite Structures, 75, 199–205. DOI: 10.1016/j.compstruct.2006.04.068. http://dx.doi.org/10.1016/j.compstruct.2006.04.06810.1016/j.compstruct.2006.04.068Suche in Google Scholar

[14] Hackman, I., & Hollaway, L. (2006). Epoxy-layered silicate nanocomposites in civil engineering. Composites Part A: Applied Science and Manufacturing, 37, 1161–1170. DOI: 10.1016/j.compositesa.2005.05.027. http://dx.doi.org/10.1016/j.compositesa.2005.05.02710.1016/j.compositesa.2005.05.027Suche in Google Scholar

[15] Hrachová, J, Chodák, I., & Komadel, P. (2009). Modification and characterization of montmorillonite fillers used in composites with vulcanized natural rubber. Chemical Papers, 63, 55–61. DOI: 10.2478/s11696-008-0079-y. http://dx.doi.org/10.2478/s11696-008-0079-y10.2478/s11696-008-0079-ySuche in Google Scholar

[16] Huynh, H. T., Roussel, N., & Coussot, P. (2005). Aging and free surface flow of a thixotropic fluid. Physics of Fluids, 17, 033101. DOI: 10.1063/1.1844911. http://dx.doi.org/10.1063/1.184491110.1063/1.1844911Suche in Google Scholar

[17] Ingram, S., Dennis, H., Hunter, I., Liggat, J. J., McAdam, C., Pethrick, R. A, Schaschke, C., & Thomson, D. (2008). Influence of clay type on exfoliation, cure and physical properties of in situ polymerised poly(methyl methacrylate) nanocomposites. Polymer International, 57, 1118–1127. DOI: 10.1002/pi.2453. http://dx.doi.org/10.1002/pi.245310.1002/pi.2453Suche in Google Scholar

[18] Issa, C. A., & Debs, P. (2007). Experimental study of epoxy repairing of cracks in concrete. Construction and Building Materials, 21, 157–163. DOI: 10.1016/j.conbuildmat.2005.06.030. http://dx.doi.org/10.1016/j.conbuildmat.2005.06.03010.1016/j.conbuildmat.2005.06.030Suche in Google Scholar

[19] Jeon, H. S., Rameshwaram, J. K., Kim, G., & Weinkauf, D. H. (2003). Characterization of polyisoprene-clay nanocomposites prepared by solution blending. Polymer, 44, 5749–5758. DOI: 10.1016/s0032-3861(03)00466-x. http://dx.doi.org/10.1016/S0032-3861(03)00466-X10.1016/S0032-3861(03)00466-XSuche in Google Scholar

[20] Kaynak, C., Nakas, G. I., & Isitman, N. A. (2009). Mechanical properties, flammability and char morphology of epoxy resin/montmorillonite nanocomposites. Applied Clay Science, 46, 319–324. DOI: 10.1016/j.clay.2009.08.033. http://dx.doi.org/10.1016/j.clay.2009.08.03310.1016/j.clay.2009.08.033Suche in Google Scholar

[21] Le Pluart, L., Duchet, J., Sautereau, H., Halley, P., & Gerard, J. F. (2004). Rheological properties of organoclays suspensions in epoxy network precursors. Applied Clay Science, 25, 207–219. DOI: 10.1016/j.clay.2003.11.004. http://dx.doi.org/10.1016/j.clay.2003.11.00410.1016/j.clay.2003.11.004Suche in Google Scholar

[22] Legghe, E., Aragon, E., Bélec, L., Margaillan, A., & Melot, D. (2009). Correlation between water diffusion and adhesion loss: Study of an epoxy primer on steel. Progress in Organic Coatings, 66, 276–280. DOI: 10.1016/j.porgcoat.2009.08.001. http://dx.doi.org/10.1016/j.porgcoat.2009.08.00110.1016/j.porgcoat.2009.08.001Suche in Google Scholar

[23] Lertwimolnun, W., & Vergnes, B. (2004). Influence de la dispersion sur le comportement rhéologique de nanocomposites polypropylčne/argile. Rhéologie, 5, 27–35. Suche in Google Scholar

[24] Mays, G. C., & Hutchinson, A. R. (1992). Adhesives in civil engineering. Cambridge, UK: Cambridge University Press. DOI: 10.1017/cbo9780511529597. http://dx.doi.org/10.1017/CBO978051152959710.1017/CBO9780511529597Suche in Google Scholar

[25] Mays, G. C. (2001). Performance requirements for structural adhesives in relation to concrete strengthening. International Journal of Adhesion & Adhesives, 21, 423–429. DOI: 10.1016/s0143-7496(01)00019-7. http://dx.doi.org/10.1016/S0143-7496(01)00019-710.1016/S0143-7496(01)00019-7Suche in Google Scholar

[26] Pavlidou, S., & Papaspyrides, C. D. (2008). A review on polymer-layered silicate nanocomposites. Progress in Polymer Science, 33, 1119–1198. DOI: 10.1016/j.progpolymsci.2008.07.008. http://dx.doi.org/10.1016/j.progpolymsci.2008.07.00810.1016/j.progpolymsci.2008.07.008Suche in Google Scholar

[27] Ren, J. X., Silva, A. S., & Krishnamoorti, R. (2000). Linear viscoelasticity of disordered polystyrene-polyisoprene block copolymer based layered-silicate nanocomposites. Macromolecules, 33, 3739–3746. DOI: 10.1021/ma992091u. http://dx.doi.org/10.1021/ma992091u10.1021/ma992091uSuche in Google Scholar

[28] Rodrigues, M. P. M. C., Costa, M., Mendes, A. M., & Eusébio Marques, M. I. (2000). Effectiveness of surface coatings to protect reinforced concrete in marine environments. Materials & Structures, 33, 618–626. DOI: 10.1007/bf02480601. http://dx.doi.org/10.1007/BF0248060110.1007/BF02480601Suche in Google Scholar

[29] Selvaraj, R., Selvaraj, M., & Iyer, S. V. K. (2009). Studies on the evaluation of the performance of organic coatings used for the prevention of corrosion of steel rebars in concrete structures. Progress in Organic Coatings, 64, 454–459. DOI: 10.1016/j.porgcoat.2008.08.005. http://dx.doi.org/10.1016/j.porgcoat.2008.08.00510.1016/j.porgcoat.2008.08.005Suche in Google Scholar

[30] Shi, X. M., Nguyen, T. A., Suo, Z. Y., Liu, Y. J., & Avci, R. (2009). Effect of nanoparticles on the anticorrosion and mechanical properties of epoxy coating. Surface & Coatings Technology, 204, 237–245. DOI: 10.1016/j.surfcoat.2009.06.048. http://dx.doi.org/10.1016/j.surfcoat.2009.06.04810.1016/j.surfcoat.2009.06.048Suche in Google Scholar

[31] Wagener, R., & Reisinger, T. J. G. (2003). A rheological method to compare the degree of exfoliation of nanocomposites. Polymer, 44, 7513–7518. DOI: 10.1016/j.polymer.2003.01.001. http://dx.doi.org/10.1016/j.polymer.2003.01.00110.1016/j.polymer.2003.01.001Suche in Google Scholar

[32] Woo, R. S. C., Zhu, H. G., Chow, M. M. K, Leung, C. K. Y., & Kim, J. K. (2008). Barrier performance of silane-clay nanocomposite coatings on concrete structure. Composites Science and Technology, 68, 2828–2836. DOI: 10.1016/j.compscitech.2007.10.028. http://dx.doi.org/10.1016/j.compscitech.2007.10.02810.1016/j.compscitech.2007.10.028Suche in Google Scholar

[33] Xia, H. S., & Song, M. (2006). Preparation and characterisation of polyurethane grafted single-walled carbon nanotubes and derived polyurethane nanocomposites. Journal of Materials Chemistry, 16, 1843–1851. DOI: 10.1039/b601152g. http://dx.doi.org/10.1039/b601152g10.1039/b601152gSuche in Google Scholar

[34] Xidas, P. I., & Triantafyllidis, K. S. (2010). Effect of the type of alkylammonium ion clay modifier on the structure and thermal/mechanical properties of glassy and rubbery epoxyclay nanocomposites. European Polymer Journal, 46, 404–417. DOI: 10.1016/j.eurpolymj.2009.11.004. http://dx.doi.org/10.1016/j.eurpolymj.2009.11.00410.1016/j.eurpolymj.2009.11.004Suche in Google Scholar

[35] Yasmin, A., Abot, J. L., & Daniel, I. M. (2003). Processing of clay/epoxy nanocomposites by shear mixing. Scripta Materialia, 49, 81–86. DOI: 10.1016/s1359-6462(03)00173-8. http://dx.doi.org/10.1016/S1359-6462(03)00173-810.1016/S1359-6462(03)00173-8Suche in Google Scholar

[36] Zhao, J., Morgan, A. B., & Harris, J. D. (2005). Rheological characterization of polystyrene-clay nanocomposites to compare the degree of exfoliation and dispersion. Polymer, 46, 8641–8660. DOI: 10.1016/j.polymer.2005.04.038. http://dx.doi.org/10.1016/j.polymer.2005.04.03810.1016/j.polymer.2005.04.038Suche in Google Scholar

[37] Zhu, L. X., Papadopoulos, K., & De Kee, D. (2002). Yield stress measurement of silicon nitride suspensions. The Canadian Journal of Chemical Engineering, 80, 1175–1180. DOI: 10.1002/cjce.5450800619. http://dx.doi.org/10.1002/cjce.545080061910.1002/cjce.5450800619Suche in Google Scholar

Published Online: 2012-4-5
Published in Print: 2012-5-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0118-y/html?lang=de
Button zum nach oben scrollen