Impact of the type of anodic film formed and deposition time on the characteristics of porous anodic aluminium oxide films containing Ni metal
Abstract
Porous anodic films containing nickel were prepared by AC electro-deposition. The porosity of the films was controlled by using different working conditions (anodisation electrolyte, voltage, and time). Then nickel was electro-deposited using an alternating voltage. The impact of the anodic film on the current density waveforms and the metal content can largely be explained by the porosity differences, while changing the deposition time caused changes due to over-oxidation of the aluminium substrate, experimentally proved by TEM. Finally, the impact of deposition time on the deposited metal was successfully fitted using an Elovich type law over a large time-span (up to 1800 s), showing the ability to achieve precise control of the metal content.
[1] Anderson, Å., Hunderi, O., & Granqvist, C. G. (1980). Nickel pigmented anodic aluminium oxide for selective absorption of solar energy. Journal of Applied Physics, 51, 754–764. DOI: 10.1063/1.327337. http://dx.doi.org/10.1063/1.32733710.1063/1.327337Suche in Google Scholar
[2] Arurault, L., & Bes, R. S. (2007). Formulation de nouveaux bains pour la coloration électrolytique. Galvano Organo Traitements de Surface, 767, 40–42. Suche in Google Scholar
[3] Arurault, L., & Bes, R. S. (2003). Kinetics of metallic electrochemical impregnation of porous anodic oxidation layer on 1050 and 2024 aluminium alloys. Advanced Engineering Materials, 5, 433–435. DOI: 10.1002/adem.200300252. http://dx.doi.org/10.1002/adem.20030025210.1002/adem.200300252Suche in Google Scholar
[4] Arurault, L., Salmi, J., & Bes, R. S. (2004). Comparison of AC voltage and periodic-reverse current nickel pigmented anodized aluminium as solar selective absorber. Solar Energy Materials and Solar Cells, 82, 447–455. DOI: 10.1016/j.solmat.2004.02.002. http://dx.doi.org/10.1016/j.solmat.2004.02.00210.1016/j.solmat.2004.02.002Suche in Google Scholar
[5] Arurault, L., Zamora, G., & Bes, R. S. (2006). Energetic costs of the electrochemical steps during the preparation of aluminium porous anodic layers impregnated by metals. ATB Métallurgie, 45, 306–309. Suche in Google Scholar
[6] Arurault, L., Zamora, G., Vilar, V., Winterton, P., & Bes, R. (2010). Electrical behaviour, characteristics and properties of anodic aluminium oxide films coloured by nickel electrode-position. Journal of Material Science, 45, 2611–2618. DOI: 10.1007/s10853-010-4235-8. http://dx.doi.org/10.1007/s10853-010-4235-810.1007/s10853-010-4235-8Suche in Google Scholar
[7] Chi, G. J., Yao, S. W., Fan, J., Zhang, W. G., & Wang, H. Z. (2002). Antibacterial activity of anodized aluminium with deposited silver. Surface and Coatings Technology, 157, 162–165. DOI: 10.1016/S0257-8972(02)00150-0. http://dx.doi.org/10.1016/S0257-8972(02)00150-010.1016/S0257-8972(02)00150-0Suche in Google Scholar
[8] Dasquet, J.-P., Bonino, J.-P., Caillard, D., & Bes, R. S. (2000a). Zinc impregnation of the anodic oxidation layer of 1050 and 2024 aluminium alloys. Journal of Applied Electrochemistry, 30, 845–853. DOI: 10.1023/A:1003947800813. http://dx.doi.org/10.1023/A:100394780081310.1023/A:1003947800813Suche in Google Scholar
[9] Dasquet, J.-P., Caillard, D., Conforto, E., Bonino, J.-P., & Bes, R. (2000b). Investigation of the anodic oxide layer on 1050 and 2024T3 aluminium alloys by electron microscopy and electrochemical impedance spectroscopy. Thin Solid Films, 371, 183–190. DOI: 10.1016/S0040-6090(00)01016-6. http://dx.doi.org/10.1016/S0040-6090(00)01016-610.1016/S0040-6090(00)01016-6Suche in Google Scholar
[10] Forrer, P., Schlottig, F., Siegenthaler, H., & Textor, M. (2000). Electrochemical preparation and surface properties of gold nanowire arrays formed by the template technique. Journal of Applied Electrochemistry, 30, 533–541. DOI: 10.1023/A:1003941129560. http://dx.doi.org/10.1023/A:100394112956010.1023/A:1003941129560Suche in Google Scholar
[11] Fukuda, Y., & Fukushima, T. (1982). Electrodeposition of nickel and zinc into the pores of anodic oxide film on aluminium. Journal of the Metal Finishing Society of Japan, 33, 50–55. Suche in Google Scholar
[12] Goueffon, Y., Arurault, L., Fontorbes, S., Mabru, C., Tonon, C., & Guigue, P. (2010). Chemical characteristics, mechanical and thermo-optical properties of black anodic films prepared on 7175 aluminium alloy for space applications. Materials Chemistry and Physics, 120, 636–642. DOI: 10.1016/j.matchemphys.2009.12.016. http://dx.doi.org/10.1016/j.matchemphys.2009.12.01610.1016/j.matchemphys.2009.12.016Suche in Google Scholar
[13] Granqvist, C. G., Andersson, Å., & Hunderi, O. (1979). Spectrally selective surfaces of Ni-pigmented anodic Al2O3. Applied Physics Letters, 35, 268–270. DOI: 10.1063/1.91078. http://dx.doi.org/10.1063/1.9107810.1063/1.91078Suche in Google Scholar
[14] Goad, D. G. W., & Moskovits, M. (1978). Colloidal metal in aluminium-oxide. Journal of Applied Physics, 49, 2929–2934. DOI: 10.1063/1.325153. http://dx.doi.org/10.1063/1.32515310.1063/1.325153Suche in Google Scholar
[15] Hwang, S.-K., Lee, J., Jeong, S.-H., Lee, P.-S., & Lee, K.-H. (2005). Fabrication of carbon nanotube emitters in an anodic aluminium oxide nanotemplate on a Si wafer by multi-step anodisation. Nanotechnology, 16, 850–858. DOI: 10.1088/0957-4484/16/6/040. http://dx.doi.org/10.1088/0957-4484/16/6/04010.1088/0957-4484/16/6/040Suche in Google Scholar
[16] Jagminas, A., Lichušina, S., Kurtinaitiené, M., & Selskis, A. (2003). Concentration effect of the solutions for alumina template ac filling by metals arrays. Applied Surface Science, 211, 194–202. DOI: 10.1016/S0169-4332(03)00247-2. http://dx.doi.org/10.1016/S0169-4332(03)00247-210.1016/S0169-4332(03)00247-2Suche in Google Scholar
[17] Kallithrakas-Kontos, N., Moshohoritou, R., Ninni, V., & Tsangaraki-Kaplanoglou, I. (1998). Investigation of the relationship between the reflectance and the deposited nickel and tin amount on the aluminium anodic oxide film. Thin Solid Films, 326, 166–170. DOI: 10.1016/S0040-6090(98)00569-0. http://dx.doi.org/10.1016/S0040-6090(98)00569-010.1016/S0040-6090(98)00569-0Suche in Google Scholar
[18] Kawai, S., & Ueda, R. (1975). Magnetic properties of anodic oxide coatings on aluminium containing electrodeposited Co and Co-Ni. Journal of the Electrochemical Society, 122, 32–36. DOI: 10.1149/1.2134152. http://dx.doi.org/10.1149/1.213415210.1149/1.2134152Suche in Google Scholar
[19] Keller, F., Hunter, M. S., & Robinson, D. L. (1953). Structural features of oxide coatings on aluminum. Journal of the Electrochemical Society, 100, 411–419. DOI: 10.1149/1.2781142. http://dx.doi.org/10.1149/1.278114210.1149/1.2781142Suche in Google Scholar
[20] Kyotani, T., Tsai, L.-f., & Tomita, A. (1996). Preparation of ultrafine carbon tubes in nanochannels of an anodic aluminium oxide film. Chemistry of Materials, 8, 2109–2113. DOI: 10.1021/cm960063+. http://dx.doi.org/10.1021/cm960063+10.1021/cm960063+Suche in Google Scholar
[21] Lee, J. H., Lee, D. N., & Kang, I. K. (1978). Alternating current color anodisation of aluminium alloys. Plating and Surface Finishing, 1, 40–44. Suche in Google Scholar
[22] McBren, P. H., & Moskovits, M. (1987). A surface-enhaced Raman study of ethylene and oxygen interacting with supported silver catalysts. Journal of Catalysis, 103, 188–199. DOI: 10.1016/0021-9517(87)90105-9. http://dx.doi.org/10.1016/0021-9517(87)90105-910.1016/0021-9517(87)90105-9Suche in Google Scholar
[23] Nielsch, K., Müller, F., Li, A.-P., & Gösele, U. (2000). Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition. Advanced Materials, 12, 582–586. DOI: 10.1002/(SICI)1521-4095(200004)12:8-582. http://dx.doi.org/10.1002/(SICI)1521-4095(200004)12:8<582::AID-ADMA582>3.0.CO;2-310.1002/(SICI)1521-4095(200004)12:8<582::AID-ADMA582>3.0.CO;2-3Suche in Google Scholar
[24] Papadopoulos, C., Chang, B. H., Yin, A. J., & Xu, J. M. (2002). Engineering carbon nanotube via template growth. International Journal of Nanoscience, 1, 205–212. DOI: 10.1142/S0219581X02000188. http://dx.doi.org/10.1142/S0219581X0200018810.1142/S0219581X02000188Suche in Google Scholar
[25] Preston, C. K., & Moskovits, M. (1993). Optical characterization of anodic aluminium oxide films containing electrochemically deposited metal particles. 1. Gold in phosphoric acid anodic aluminium oxide films. The Journal of Physical Chemistry, 97, 8495–8503. DOI: 10.1021/j100134a019. http://dx.doi.org/10.1021/j100134a01910.1021/j100134a019Suche in Google Scholar
[26] Safrany, J. S. (2008). Anodisation de l’aluminium et de ses alliages. Techniques de l’Ingénieur, 6(COR 12), M1630v2/1-M1630v2/27. 10.51257/a-v3-m1630Suche in Google Scholar
[27] Salmi, J., Bonino, J.-P., & Bes, R. S. (2000). Nickel pigmented anodized aluminium as solar selective absorbers. Journal of Materials Science, 35, 1347–1351. DOI: 10.1023/A:10047738 21962. http://dx.doi.org/10.1023/A:1004773821962Suche in Google Scholar
[28] Sauer, G., Brehm, G., Schneider, S., Nielsch, K., Wehrspohn, R. B., Choi, J., Hofmeister, H., & Gösele, U. (2002). Highly ordered monocrystalline silver nanowire arrays. Journal of Applied Physics, 91, 3243–3247. DOI: 10.1063/1.1435830. http://dx.doi.org/10.1063/1.143583010.1063/1.1435830Suche in Google Scholar
[29] Shaffei, M. F., Abd El-Rehim, S. S., Shaaban, N. A., & Huisen, H. S. (2001). Electrolytic coloring of anodic aluminum for selective solar absorbing films: use of additives promoting color depth and rate. Renewable Energy, 23, 489–495. DOI: 10.1016/S0960-1481(00)00129-4. http://dx.doi.org/10.1016/S0960-1481(00)00129-410.1016/S0960-1481(00)00129-4Suche in Google Scholar
[30] Szkutnik, P. D., Maximovitch, S., Chainet, E., Dalard, F., Saulig, K., Dijon, J., & Pantigny, P. (2006). Aluminium anodisation process including oxide barrier removal for nanotechnological applications. ATB Métallurgie, 45, 116–119. Suche in Google Scholar
[31] Trompette, J. L., Arurault, L., Fontorbes, S., & Massot, L. (2010). Influence of the anion specificity on the electrochemical corrosion of anodized aluminum substrates. Electrochimica Acta, 55, 2901–2910. DOI: 10.1016/j.electacta.2009.12. 063. http://dx.doi.org/10.1016/j.electacta.2009.12.06310.1016/j.electacta.2009.12.063Suche in Google Scholar
[32] Van der Linden, B., Terryn, H., & Vereecken, J. (1990). Investigation of anodic aluminium oxide layers by electrochemical impedance spectroscopy. Journal of Applied Electrochemistry, 20, 798–803. DOI: 10.1007/BF01094309. http://dx.doi.org/10.1007/BF0109430910.1007/BF01094309Suche in Google Scholar
[33] Wang, Z., Su, Y.-K., & Li, H.-L. (2002). AFM study of gold nanowire array electrodeposited within anodic aluminium oxide template. Applied Physics A: Materials Science & Processing, 74, 563–565. DOI: 10.1007/s003390100909. http://dx.doi.org/10.1007/s00339010090910.1007/s003390100909Suche in Google Scholar
[34] Wernick, S., Pinner, R., & Sheasby, P. G. (1987). The surface treatment and finishing of aluminum and its alloys (5th ed.). Teddington, England: ASM International. Suche in Google Scholar
[35] Wu, H.-Y., Zhao, Y., & Jiao, Q.-Z. (2009). Nanotube arrays of Zn/Co/Fe composite oxides assembled in porous anodic alumina and their magnetic properties. Journal of Alloys Compounds, 487, 591–594. DOI: 10.1016/j.jallcom.2009.08.018. http://dx.doi.org/10.1016/j.jallcom.2009.08.01810.1016/j.jallcom.2009.08.018Suche in Google Scholar
[36] Yang, S., Zhu, H., Yu, D., Jin, Z., Tang, S., & Du, Y. (2000). Preparation and magnetic property of Fe nanowire array, Journal of Magnetism and Magnetic Materials, 222, 97–100. DOI: 10.1016/S0304-8853(00)00541-2. http://dx.doi.org/10.1016/S0304-8853(00)00541-210.1016/S0304-8853(00)00541-2Suche in Google Scholar
[37] Yin, A. J., Li, J., Jian, W., Bennett, A. J., & Xu, J. M. (2001). Fabrication of highly ordered metallic nanowire arrays by electrodeposition. Applied Physics Letters, 79, 1039–1041. DOI: 10.1063/1.1389765. http://dx.doi.org/10.1063/1.138976510.1063/1.1389765Suche in Google Scholar
[38] Yoo, W.-C., & Lee, J.-K. (2004). Field-dependent growth patterns of metals electroplated in nanoporous alumina membranes. Advanced Materials, 16, 1097–1101. DOI: 10.1002/adma.200306595. http://dx.doi.org/10.1002/adma.20030659510.1002/adma.200306595Suche in Google Scholar
[39] Zamora, G., Arurault, L., & Bes, R. S. (2004). Aspectos energéticos y caracteristicas: De las capas anódicas porosas elaboradas en aleaciones de aluminio 1050A. Pinturas y Acabados Industriales, 46(290), 36–40. Suche in Google Scholar
[40] Zemanová, M., Chovancová, M., Blaho, P., Ušák, E., & Valtýni, J. (2008a). Effect of plating mode and complexing agent on morphology of pigmented anodic alumina coatings. Transactions of the Institute of Metal Finishing, 86, 109–114. DOI: 10.1179/174591908X272933. http://dx.doi.org/10.1179/174591908X27293310.1179/174591908X272933Suche in Google Scholar
[41] Zemanová, M., Chovancová, M., Gáliková, Z., & Krivošík, P. (2008b). Nickel electrolytic colouring of anodic alumina for selective solar absorbing films. Renewable Energy, 33, 2303–2310. DOI: 10.1016/j.renene.2008.01.005. http://dx.doi.org/10.1016/j.renene.2008.01.00510.1016/j.renene.2008.01.005Suche in Google Scholar
[42] Zemanová, M., Chovancová, M., & Krivošík, P. (2009a). A new approach to nickel electrolytic colouring of anodised aluminium. Chemical Papers, 63, 62–70. DOI:10.2478/s11696-008-0081-4. http://dx.doi.org/10.2478/s11696-008-0081-410.2478/s11696-008-0081-4Suche in Google Scholar
[43] Zemanová, M., Gál, M., & Chovancová, M. (2009b). Effect of frequency on pulse electrolytic colouring process of anodised aluminium. Transactions of the Institute of Metal Finishing, 87, 97–101. DOI: 10.1179/174591909X424186. http://dx.doi.org/10.1179/174591909X42418610.1179/174591909X424186Suche in Google Scholar
© 2011 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Lipid retention of novel pressurized extraction vessels as a function of the number of static and flushing cycles, flush volume, and flow rate
- Determination of curcuminoids in substances and dosage forms by cyclodextrin-mediated capillary electrophoresis with diode array detection
- Interaction of Moringa oleifera seed lectin with humic acid
- Hybrid process scheme for the synthesis of ethyl lactate: conceptual design and analysis
- Zinc catalyst recycling in the preparation of (all-rac)-α-tocopherol from trimethylhydroquinone and isophytol
- Denitrification of simulated nitrate-rich wastewater using sulfamic acid and zinc scrap
- Anaerobic treatment of biodiesel by-products in a pilot scale reactor
- Preparation of magnesium hydroxide from nitrate aqueous solution
- Impact of the type of anodic film formed and deposition time on the characteristics of porous anodic aluminium oxide films containing Ni metal
- Synthesis and crystal and molecular structures of N,N′-methylenedipyridinium tetrachlorozincate(II) and N,N′-methylenedipyridinium tetrachlorocadmate(II)
- Effects of denaturing acid on the self-association behaviour of poly(ethylene glycol)-block-poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer in ethanol
- Properties of poly(γ-benzyl l-glutamate) membrane modified by polyurethane containing carboxyl group
- Theoretical thermo-optical patterns relevant to glass crystallisation
- Morphology dependence of 1,2-diphenylethylenediamine-derived organogelator templates in solvents and their influence in the production of nanostructured silica
- Ferric hydrogensulphate as a recyclable catalyst for the synthesis of fluorescein derivatives
- An alternative synthetic process of p-acetaminobenzenesulfonyl chloride through combined chlorosulfonation by HClSO3 and PCl5
- An efficient and novel one-pot synthesis of 2,4,5-triaryl-1H-imidazoles catalyzed by UO2(NO3)2·6H2O under heterogeneous conditions
- Stereoselective synthesis of the polar part of mycestericins E and G
- A regio- and stereoselective three-component synthesis of 5-(trifluoromethyl)-4,5,6,7-tetrahydro-[1,2,4]triazolo[1,5-a]pyrimidine derivatives under solvent-free conditions
- Precautions in using global kinetic and thermodynamic models for characterization of drug release from multivalent supports
- A sandwich anion receptor by a BODIPY dye bearing two calix[4]pyrrole units
- What causes iron-sulphur bonds in active sites of one-iron superoxide reductase and two-iron superoxide reductase to differ?
- MTD-PLS and docking study for a series of substituted 2-phenylindole derivatives with oestrogenic activity
Artikel in diesem Heft
- Lipid retention of novel pressurized extraction vessels as a function of the number of static and flushing cycles, flush volume, and flow rate
- Determination of curcuminoids in substances and dosage forms by cyclodextrin-mediated capillary electrophoresis with diode array detection
- Interaction of Moringa oleifera seed lectin with humic acid
- Hybrid process scheme for the synthesis of ethyl lactate: conceptual design and analysis
- Zinc catalyst recycling in the preparation of (all-rac)-α-tocopherol from trimethylhydroquinone and isophytol
- Denitrification of simulated nitrate-rich wastewater using sulfamic acid and zinc scrap
- Anaerobic treatment of biodiesel by-products in a pilot scale reactor
- Preparation of magnesium hydroxide from nitrate aqueous solution
- Impact of the type of anodic film formed and deposition time on the characteristics of porous anodic aluminium oxide films containing Ni metal
- Synthesis and crystal and molecular structures of N,N′-methylenedipyridinium tetrachlorozincate(II) and N,N′-methylenedipyridinium tetrachlorocadmate(II)
- Effects of denaturing acid on the self-association behaviour of poly(ethylene glycol)-block-poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer in ethanol
- Properties of poly(γ-benzyl l-glutamate) membrane modified by polyurethane containing carboxyl group
- Theoretical thermo-optical patterns relevant to glass crystallisation
- Morphology dependence of 1,2-diphenylethylenediamine-derived organogelator templates in solvents and their influence in the production of nanostructured silica
- Ferric hydrogensulphate as a recyclable catalyst for the synthesis of fluorescein derivatives
- An alternative synthetic process of p-acetaminobenzenesulfonyl chloride through combined chlorosulfonation by HClSO3 and PCl5
- An efficient and novel one-pot synthesis of 2,4,5-triaryl-1H-imidazoles catalyzed by UO2(NO3)2·6H2O under heterogeneous conditions
- Stereoselective synthesis of the polar part of mycestericins E and G
- A regio- and stereoselective three-component synthesis of 5-(trifluoromethyl)-4,5,6,7-tetrahydro-[1,2,4]triazolo[1,5-a]pyrimidine derivatives under solvent-free conditions
- Precautions in using global kinetic and thermodynamic models for characterization of drug release from multivalent supports
- A sandwich anion receptor by a BODIPY dye bearing two calix[4]pyrrole units
- What causes iron-sulphur bonds in active sites of one-iron superoxide reductase and two-iron superoxide reductase to differ?
- MTD-PLS and docking study for a series of substituted 2-phenylindole derivatives with oestrogenic activity