Home Effects of denaturing acid on the self-association behaviour of poly(ethylene glycol)-block-poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer in ethanol
Article
Licensed
Unlicensed Requires Authentication

Effects of denaturing acid on the self-association behaviour of poly(ethylene glycol)-block-poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer in ethanol

  • Guo-Quan Zhu EMAIL logo , Qiao-Chun Gao , Fa-Gang Wang , Guo-Chang Li and Ping Wang
Published/Copyright: May 21, 2011
Become an author with De Gruyter Brill

Abstract

Poly(ethylene glycol)-block-poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) (PEG-b-PBLG-g-PEG) copolymer was synthesised by the ester exchange reaction of PEG-block-PBLG copolymer with mPEG. The self-association behaviour of PEG-b-PBLG-g-PEG in mixtures of ethanol, chloroform, and trifluoroacetic acid as denaturing acid was investigated by transmission electron microscopy, nuclear magnetic resonance spectroscopy, FT-IR spectroscopy, dynamic light scattering, and viscometry. It was revealed that the increase in denaturing acid content in the mixed system not only promoted the critical micelle concentration but also changed the morphology of the polymeric micelles from elliptical to spherical.

[1] Abe, A., & Yamazaki, T. (1989). Deuterium NMR analysis of poly(γ-benzyl l-glutamate) in the lyotropic liquid-crystalline state: orientational order of the α-helical backbone and conformation of the pendant side chain. Macromolecules, 22, 2138–2145. DOI: 10.1021/ma00195a023. http://dx.doi.org/10.1021/ma00195a02310.1021/ma00195a023Search in Google Scholar

[2] Cheon, J.-B., Jeong, Y.-I., & Cho, C.-S. (1999). Effects of temperature on diblock copolymer micelle composed of poly(γ-benzyl l-glutamate) and poly(N-isopropylacrylamide). Polymer, 40, 2041–2050. DOI: 10.1016/S0032-3861(98)00432-7. http://dx.doi.org/10.1016/S0032-3861(98)00432-710.1016/S0032-3861(98)00432-7Search in Google Scholar

[3] Cho, C.-S., Cheon, J.-B., Jeong, Y.-I., Kim, I.-S., Kim, S.-H., & Akaike, T. (1997). Novel core-shell type thermo-sensitive nanoparticles composed of poly(γ-benzyl l-glutamate) as the core and poly(N-isopropylacrylamide) as the shell. Macromolecular Rapid Communications, 18, 361–369. DOI: 10.1002/marc.1997.030180502. http://dx.doi.org/10.1002/marc.1997.03018050210.1002/marc.1997.030180502Search in Google Scholar

[4] Cho, C.-S., Jeong, Y.-I., Kim, S.-H., Nah, J.-W., Kubota, M., & Komoto, T. (2000). Thermoplastic hydrogel based on hexablock copolymer composed of poly(γ-benzyl l-glutamate) and poly(ethylene oxide). Polymer, 41, 5185–5193. DOI: 10.1016/S0032-3861(99)00746-6. http://dx.doi.org/10.1016/S0032-3861(99)00746-610.1016/S0032-3861(99)00746-6Search in Google Scholar

[5] Cho, C.-S., Nah, J.-W., Jeong, Y.-I., Cheon, J.-B., Asayama, S., Ise, H., & Akaike, T. (1999). Conformational transition of nanoparticles composed of poly(γ-benzyl l-glutamate) as the core and poly(ethylene oxide) as the shell. Polymer, 40, 6769–6775. DOI: 10.1016/S0032-3861(99)00007-5. http://dx.doi.org/10.1016/S0032-3861(99)00007-510.1016/S0032-3861(99)00007-5Search in Google Scholar

[6] Ferretti, J. A., & Ninham, B. W. (1970). Nuclear magnetic resonance investigation of the helix to random coil transformation in poly(α-amino acids). II. Poly(γ-benzyl l-glutamate). Macromolecules, 3, 30–33. DOI: 10.1021/ma60013a008. http://dx.doi.org/10.1021/ma60013a00810.1021/ma60013a008Search in Google Scholar

[7] Gao, Z., Desjardins, A., & Eisenberg, A. (1992). Solubilization equilibria of water in nonaqueous solutions of block ionomer reverse micelles: an NMR study. Macromolecules, 25, 1300–1303. DOI: 10.1021/ma00030a015. http://dx.doi.org/10.1021/ma00030a01510.1021/ma00030a015Search in Google Scholar

[8] Harada, A., Cammas, S., & Kataoka, K. (1996). Stabilized α-helix structure of poly(l-lysine)-block-poly(ethylene glycol) in aqueous medium through supramolecular assembly. Macromolecules, 29, 6183–6188. DOI: 10.1021/ma960487p. http://dx.doi.org/10.1021/ma960487p10.1021/ma960487pSearch in Google Scholar

[9] Harada, A., & Kataoka, K. (1995). Formation of polyion complex micelles in an aqueous milieu from a pair of oppositely-charged block copolymers with poly(ethylene glycol) segments. Macromolecules, 28, 5294–5299. DOI: 10.1021/ma00119a019. http://dx.doi.org/10.1021/ma00119a01910.1021/ma00119a019Search in Google Scholar

[10] Higashi, N., Kawahara, J., & Niwa, M. (2005). Preparation of helical peptide monolayer-coated gold nanoparticles. Journal of Colloid and Interface Science, 288, 83–87. DOI: 10.1016/j.jcis.2005.02.086. http://dx.doi.org/10.1016/j.jcis.2005.02.08610.1016/j.jcis.2005.02.086Search in Google Scholar PubMed

[11] Inomata, K., Ohara, N., Shimizu, H., & Nose, T. (1998). Phase behaviour of rod with flexible side chains/coil/solvent systems: poly(α-l-glutamate) with tri(ethylene glycol) side chains, poly(ethylene glycol), and dimethylformamide. Polymer, 39, 3379–3386. DOI: 10.1016/S0032-3861(97)10037-4. http://dx.doi.org/10.1016/S0032-3861(97)10037-410.1016/S0032-3861(97)10037-4Search in Google Scholar

[12] Inomata, K., Shimizu, H., & Nose, T. (2000). Phase equilibrium studies on rod/solvent and rod/coil/solvent systems containing poly(α, l-glutamate) having oligo(ethylene glycol) side chains. Journal of Polymer Science Part B: Polymer Physics, 38, 1331–1340. DOI: 10.1002/(SICI)1099-0488(20000515)38:10<1331::AID-POLB90>3.0.CO;2-F. http://dx.doi.org/10.1002/(SICI)1099-0488(20000515)38:10<1331::AID-POLB90>3.0.CO;2-F10.1002/(SICI)1099-0488(20000515)38:10<1331::AID-POLB90>3.0.CO;2-FSearch in Google Scholar

[13] Jeong, Y.-I., Nah, J.-W., Lee, H.-C., Kim, S.-H., & Cho, C.-S. (1999). Adriamycin release from flower-type polymeric micelle based on star-block copolymer composed of poly(γ-benzyl l-glutamate) as the hydrophobic part and poly(ethylene oxide) as the hydrophilic part. International Journal of Pharmaceutics, 188, 49–58. DOI: 10.1016/S0378-5173(99)00202-1. http://dx.doi.org/10.1016/S0378-5173(99)00202-110.1016/S0378-5173(99)00202-1Search in Google Scholar

[14] Kwon, G., Naito, M., Yokoyama, M., Okano, T., Sakurai, Y., & Kataoka, K. (1993). Micelles based on AB block copolymers of poly(ethylene oxide) and poly(β-benzyl l-aspartate). Langmuir, 9, 945–949. DOI: 10.1021/la00028a012. http://dx.doi.org/10.1021/la00028a01210.1021/la00028a012Search in Google Scholar

[15] Li, T., Lin, J., Chen, T., & Zhang, S. (2006). Polymeric micelles formed by polypeptide graft copolymer and its mixtures with polypeptide block copolymer. Polymer, 47, 4485–4489. DOI: 10.1016/j.polymer.2006.04.011. http://dx.doi.org/10.1016/j.polymer.2006.04.01110.1016/j.polymer.2006.04.011Search in Google Scholar

[16] Lin, J., Abe, A., Furuya, H., & Okamoto, S. (1996). Liquid crystal formation coupled with the coil-helix transition in the ternary system poly(γ-benzyl l-glutamate)/dichloroacetic acid/dichloroethane. Macromolecules, 29, 2584–2589. DOI: 10.1021/ma951026r. http://dx.doi.org/10.1021/ma951026r10.1021/ma951026rSearch in Google Scholar

[17] Lin, J., Liu, N., Chen, J., & Zhou, D. (2000). Conformational changes coupled with the isotropic-anisotropic transition Part 1. Experimental phenomena and theoretical con siderations. Polymer, 41, 6189–6194. DOI: 10.1016/S0032-3861(99)00848-4. http://dx.doi.org/10.1016/S0032-3861(99)00848-410.1016/S0032-3861(99)00848-4Search in Google Scholar

[18] Lin, J., Zhang, S., Chen, T., Lin, S., & Jin, H. (2007). Micelle formation and drug release behavior of polypeptide graft copolymer and its mixture with polypeptide block copolymer. International Journal of Pharmaceutics, 336, 49–57. DOI: 10.1016/j.ijpharm.2006.11.026. http://dx.doi.org/10.1016/j.ijpharm.2006.11.02610.1016/j.ijpharm.2006.11.026Search in Google Scholar

[19] Lin, J., Zhang, S., Chen, T., Liu, C., Lin, S., & Tian, X. (2006). Calcium phosphate cement reinforced by polypeptide copolymers. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 76B, 432–439. DOI: 10.1002/jbm.b.30392. http://dx.doi.org/10.1002/jbm.b.3039210.1002/jbm.b.30392Search in Google Scholar

[20] Lin, J., Zhu, G., Zhu, X., Lin, S., Nose, T., & Ding, W. (2008). Aggregate structure change induced by intramolecular helix-coil transition. Polymer, 49, 1132–1136. DOI: 10.1016/j.polymer.2008.01.021. http://dx.doi.org/10.1016/j.polymer.2008.01.02110.1016/j.polymer.2008.01.021Search in Google Scholar

[21] Lin, J., Zhu, J., Chen, T., Lin, S., Cai, C., Zhang, L., Zhuang, Y., & Wang, X.-S. (2009). Drug releasing behavior of hybrid micelles containing polypeptide triblock copolymer. Biomaterials, 30, 108–117. DOI: 10.1016/j.biomaterials.2008.09.010. http://dx.doi.org/10.1016/j.biomaterials.2008.09.01010.1016/j.biomaterials.2008.09.010Search in Google Scholar

[22] Liu, N., Lin, J., Chen, T., Chen, J., Zhou, D., & Li, L. (2001). Helix-coil conformation change accompanied by anisotropic-isotropic transition. Polymer Journal, 33, 898–901. DOI: 10.1295/polymj.33.898. http://dx.doi.org/10.1295/polymj.33.89810.1295/polymj.33.898Search in Google Scholar

[23] Markland, P., Amidon, G. L., & Yang, V. C. (1999). Modified polypeptides containing γ-benzyl glutamic acid as drug delivery platforms. International Journal of Pharmaceutics, 178, 183–192. DOI: 10.1016/S0378-5173(98)00373-1. http://dx.doi.org/10.1016/S0378-5173(98)00373-110.1016/S0378-5173(98)00373-1Search in Google Scholar

[24] Nah, J.-W., Jeong, Y.-I., & Cho, C.-S. (1998). Clonazepam release from core-shell type nanoparticles composed of poly(γ-benzyl l-glutamate) as the hydrophobic part and poly(ethylene oxide) as the hydrophilic part. Journal of Polymer Science Part B: Polymer Physics, 36, 415–423. DOI: 10.1002/(SICI)1099-0488(199802)36:3<415::AID-POLB3> 3.0.CO;2-Q. http://dx.doi.org/10.1002/(SICI)1099-0488(199802)36:3<415::AID-POLB3>3.0.CO;2-Q10.1002/(SICI)1099-0488(199802)36:3<415::AID-POLB3>3.0.CO;2-QSearch in Google Scholar

[25] Oh, I., Lee, K., Kwon, H.-Y., Lee, Y.-B., Shin, S.-C., Cho, C.-S., & Kim, C.-K. (1999). Release of adriamycin from poly(γ-benzyl-l-glutamate)/poly(ethylene oxide) nanoparticles. International Journal of Pharmaceutics, 181, 107–115. DOI: 10.1016/S0378-5173(99)00012-5. http://dx.doi.org/10.1016/S0378-5173(99)00012-510.1016/S0378-5173(99)00012-5Search in Google Scholar

[26] Tang, D., Lin, J., Lin, S., Zhang, S., Chen, T., & Tian, X. (2004). Self-assembly of poly(γ-benzyl l-glutamate)-graft-poly( ethylene glycol) and its mixtures with poly(γ-benzyl l-glutamate) homopolymer. Macromolecular Rapid Communications, 25, 1241–1246. DOI: 10.1002/marc.200400100. http://dx.doi.org/10.1002/marc.20040010010.1002/marc.200400100Search in Google Scholar

[27] Xu, Z., Feng, L., Ji, J., Cheng, S., Chen, Y., & Yi, C. (1998). The micellization of amphiphilic graft copolymer PMMA-g-PEO in toluene. European Polymer Journal, 34, 1499–1504. DOI: 10.1016/S0014-3057(97)00279-6. http://dx.doi.org/10.1016/S0014-3057(97)00234-610.1016/S0014-3057(97)00279-6Search in Google Scholar

[28] Zhang, W., Shi, L., An, Y., Wu, K., Gao, L. Liu, Z., Ma, R., Meng, Q., Zhao, C., & He, B. (2004). Adsorption of poly(4-vinyl pyridine) unimers into polystyrene-block-poly(acrylic acid) micelles in ethanol due to hydrogen bonding. Macromolecules, 37, 2924–2929. DOI: 10.1021/ma0499775. http://dx.doi.org/10.1021/ma049977510.1021/ma0499775Search in Google Scholar

[29] Zhong, X. F., Varshney, S. K., & Eisenberg, A. (1992). Critical micelle lengths for ionic blocks in solutions of polystyrene-b-poly( sodium acrylate) ionomers. Macromolecules, 25, 7160–7167. DOI: 10.1021/ma00052a014. http://dx.doi.org/10.1021/ma00052a01410.1021/ma00052a014Search in Google Scholar

[30] Zhu, G.-Q. (2010). Properties of a poly(ethylene glycol)-block-poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer membrane. Chemical Papers, 64, 34–39. DOI: 10.2478/s11696-009-0090-y. http://dx.doi.org/10.2478/s11696-009-0090-y10.2478/s11696-009-0090-ySearch in Google Scholar

[31] Zhu, G.-Q. (2009a). Study on polymeric micelles of poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer and its mixtures with poly(γ-benzyl l-glutamate) homopolymer in ethanol. Chemical Papers, 63, 683–688. DOI: 10.2478/s11696-009-0074-y. http://dx.doi.org/10.2478/s11696-009-0074-y10.2478/s11696-009-0074-ySearch in Google Scholar

[32] Zhu, G.-Q. (2009b). Study on self-assembly of poly(ethylene glycol)-block-poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer and poly(γ-benzyl l-glutamate)-block-poly( ethylene glycol) copolymer in ethanol. Journal of Macromolecular Science Part A, 46, 892–898. DOI: 10.1080/10601320903078313. http://dx.doi.org/10.1080/1060132090307831310.1080/10601320903078313Search in Google Scholar

[33] Zhu, G.-Q. (2009c). Structure and performance of poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer membrane. Fibers and Polymers, 10, 425–429. DOI: 10.1007/s12221-009-0425-x. http://dx.doi.org/10.1007/s12221-009-0425-x10.1007/s12221-009-0425-xSearch in Google Scholar

[34] Zhu, G.-Q., Gao, Q.-C., Li, Z.-H., Wang, F.-G., & Zhang, H. (2010a). Modification of poly(vinyl alcohol) membrane via blending with poly(γ-benzyl l-glutamate)-block-poly(ethylene glycol) copolymer. Chemical Papers, 64, 776–782. DOI: 10.2478/s11696-010-0069-8. http://dx.doi.org/10.2478/s11696-010-0069-810.2478/s11696-010-0069-8Search in Google Scholar

[35] Zhu, G.-Q., Wang, F.-G., Liu, Y.-Y., & Gao, Q.-C. (2010b). Factors influencing aggregation behavior of poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer in mixed solvents. Chemical Papers, 64, 657–662. DOI: 10.2478/s11 696-010-0046-2. http://dx.doi.org/10.2478/s11696-010-0046-210.2478/s11696-010-0046-2Search in Google Scholar

Published Online: 2011-5-21
Published in Print: 2011-8-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Lipid retention of novel pressurized extraction vessels as a function of the number of static and flushing cycles, flush volume, and flow rate
  2. Determination of curcuminoids in substances and dosage forms by cyclodextrin-mediated capillary electrophoresis with diode array detection
  3. Interaction of Moringa oleifera seed lectin with humic acid
  4. Hybrid process scheme for the synthesis of ethyl lactate: conceptual design and analysis
  5. Zinc catalyst recycling in the preparation of (all-rac)-α-tocopherol from trimethylhydroquinone and isophytol
  6. Denitrification of simulated nitrate-rich wastewater using sulfamic acid and zinc scrap
  7. Anaerobic treatment of biodiesel by-products in a pilot scale reactor
  8. Preparation of magnesium hydroxide from nitrate aqueous solution
  9. Impact of the type of anodic film formed and deposition time on the characteristics of porous anodic aluminium oxide films containing Ni metal
  10. Synthesis and crystal and molecular structures of N,N′-methylenedipyridinium tetrachlorozincate(II) and N,N′-methylenedipyridinium tetrachlorocadmate(II)
  11. Effects of denaturing acid on the self-association behaviour of poly(ethylene glycol)-block-poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer in ethanol
  12. Properties of poly(γ-benzyl l-glutamate) membrane modified by polyurethane containing carboxyl group
  13. Theoretical thermo-optical patterns relevant to glass crystallisation
  14. Morphology dependence of 1,2-diphenylethylenediamine-derived organogelator templates in solvents and their influence in the production of nanostructured silica
  15. Ferric hydrogensulphate as a recyclable catalyst for the synthesis of fluorescein derivatives
  16. An alternative synthetic process of p-acetaminobenzenesulfonyl chloride through combined chlorosulfonation by HClSO3 and PCl5
  17. An efficient and novel one-pot synthesis of 2,4,5-triaryl-1H-imidazoles catalyzed by UO2(NO3)2·6H2O under heterogeneous conditions
  18. Stereoselective synthesis of the polar part of mycestericins E and G
  19. A regio- and stereoselective three-component synthesis of 5-(trifluoromethyl)-4,5,6,7-tetrahydro-[1,2,4]triazolo[1,5-a]pyrimidine derivatives under solvent-free conditions
  20. Precautions in using global kinetic and thermodynamic models for characterization of drug release from multivalent supports
  21. A sandwich anion receptor by a BODIPY dye bearing two calix[4]pyrrole units
  22. What causes iron-sulphur bonds in active sites of one-iron superoxide reductase and two-iron superoxide reductase to differ?
  23. MTD-PLS and docking study for a series of substituted 2-phenylindole derivatives with oestrogenic activity
Downloaded on 8.9.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0021-6/html
Scroll to top button