Home A sandwich anion receptor by a BODIPY dye bearing two calix[4]pyrrole units
Article
Licensed
Unlicensed Requires Authentication

A sandwich anion receptor by a BODIPY dye bearing two calix[4]pyrrole units

  • Yongjun Lv EMAIL logo , Jian Xu , Yong Guo and Shijun Shao
Published/Copyright: May 21, 2011
Become an author with De Gruyter Brill

Abstract

A novel dicalix[4]pyrrolyl-substituted 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) dye I with an absorption peak at approximately 670 nm and an emission peak at about 690 nm was prepared. As an anion receptor, I displayed a red shift in absorption spectra and fluorescence quenching in varying degrees in the presence of F−, AcO−, H2PO4−, or Cl−. Compared with the parent calix[4]pyrrole, a representative anion receptor, I exhibited a stronger affinity to these anions due to the formation of a sandwich complex through multiple hydrogen-bonding interactions.

[1] Anzenbacher, P., Jr., Jursíková, K., & Sessler, J. L. (2000). Second generation calixpyrrole anion sensors. Journal of the American Chemical Society, 122, 9350–9351. DOI: 10.1021/ja001308t. http://dx.doi.org/10.1021/ja001308t10.1021/ja001308tSearch in Google Scholar

[2] Ballou, B., Ernst, L. A., & Waggoner, A. S. (2005). Fluorescence imaging of tumors in vivo. Current Medicinal Chemistry, 12, 795–805. DOI: 10.2174/0929867053507324. http://dx.doi.org/10.2174/092986705350732410.2174/0929867053507324Search in Google Scholar

[3] Bianchi, A., Bowman-James, K., & Garcia-Espana, E. (1997). Supramolecular chemistry of anions. New York, NY, USA: Wiley-VCH. Search in Google Scholar

[4] Caltagirone, C., & Gale, P. A. (2009). Anion receptor chemistry: highlights from 2007. Chemical Society Reviews, 38, 520–563. DOI: 10.1039/b806422a. http://dx.doi.org/10.1039/b806422a10.1039/B806422ASearch in Google Scholar

[5] Connors, K. A. (1987). Binding constants: The measurement of molecular complex stability. New York, NY, USA: Wiley-VCH. Search in Google Scholar

[6] Coskun, A., Baytekin, B. T., & Akkaya, E. U. (2003). Novel fluorescent chemosensor for anions via modulation of oxidative PET: a remarkable 25-fold enhancement of emission. Tetrahedron Letters, 44, 5649–5651. DOI: 10.1016/S0040-4039(03)01365-0. http://dx.doi.org/10.1016/S0040-4039(03)01365-010.1016/S0040-4039(03)01365-0Search in Google Scholar

[7] Ekmekci, Z., Yilmaz, M. D., & Akkaya, E. U. (2008). A monostyryl-boradiazaindacene (BODIPY) derivative as colorimetric and fluorescent probe for cyanide ions. Organic Letters, 10, 461–464. DOI: 10.1021/ol702823u. http://dx.doi.org/10.1021/ol702823u10.1021/ol702823uSearch in Google Scholar PubMed

[8] Gale, P. A. (2008). Synthetic indole, carbazole, biindole and indolocarbazole-based receptors: applications in anion complexation and sensing. Chemical Communications, 38, 4525–4540. DOI: 10.1039/b809508f. http://dx.doi.org/10.1039/b809508f10.1039/b809508fSearch in Google Scholar PubMed

[9] Gale, P. A., Sessler, J. L., Král, V., & Lynch, V. (1996). Calix[4]pyrroles: Old yet new anion-binding agents. Journal of the American Chemical Society, 118, 5140–5141. DOI: 10.1021/ja960307r. http://dx.doi.org/10.1021/ja960307r10.1021/ja960307rSearch in Google Scholar

[10] Gunnlaugsson, T., Glynn, M., Tocci (née Hussey), G. M., Kruger, P. E., & Pfeffer, F. M. (2006). Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors. Coordination Chemistry Reviews, 250, 3094–3117. DOI: 10.1016/j.ccr.2006.08.017. http://dx.doi.org/10.1016/j.ccr.2006.08.01710.1016/j.ccr.2006.08.017Search in Google Scholar

[11] Kollmannsberger, M., Rurack, K., Resch-Genger, U., & Daub, J. (1998). Ultrafast charge transfer in amino-substituted boron dipyrromethene dyes and its inhibition by cation complexation: A new design concept for highly sensitive fluorescent probes. The Journal of Physical Chemistry A, 102, 10211–10220. DOI: 10.1021/jp982701c. http://dx.doi.org/10.1021/jp982701c10.1021/jp982701cSearch in Google Scholar

[12] Loudet, A., & Burgess, K. (2007). BODIPY dyes and their derivatives: Syntheses and spectroscopic properties. Chemical Reviews, 107, 4891–4932. DOI: 10.1021/cr078381n. http://dx.doi.org/10.1021/cr078381n10.1021/cr078381nSearch in Google Scholar PubMed

[13] Martínez-Máñez, R., & Sancenón, F. (2003). Fluorogenic and chromogenic chemosensors and reagents for aions. Chemical Reviews, 103, 4419–4476. DOI: 10.1021/cr010421e. http://dx.doi.org/10.1021/cr010421e10.1021/cr010421eSearch in Google Scholar

[14] Mikláš, R., Kasák, P., Devínsky, F., & Putala, M. (2009). Fluoride anion sensing using colorimetric reagents containing binaphthyl moiety and urea binding site. Chemical Papers, 63, 709–715. DOI: 10.2478/s11696-009-0079-6. http://dx.doi.org/10.2478/s11696-009-0079-610.2478/s11696-009-0079-6Search in Google Scholar

[15] Miyaji, H., Anzenbacher, P., Jr., Sessler, J. L., Bleasdale, E. R., & Gale, P. A. (1999). Anthracene-linked calix[4]pyrroles: Fluorescent chemosensors for anions. Chemical Communications, 17, 1723–1724. DOI: 10.1039/a905054j. http://dx.doi.org/10.1039/a905054j10.1039/a905054jSearch in Google Scholar

[16] Miyaji, H., Sato, W., & Sessler, J. L. (2000). Naked-eye detection of anions in dichloromenthane: Colorimetric anion sensors based on calix[4]pyrrole. Angewandte Chemie International Edition, 39, 1777–17780. DOI: 10.1002/(SICI)1521-3773(20000515)39:10〈1777::AID-ANIE1777〉3.0.CO;2-E. http://dx.doi.org/10.1002/(SICI)1521-3773(20000515)39:10<1777::AID-ANIE1777>3.0.CO;2-E10.1002/(SICI)1521-3773(20000515)39:10<1777::AID-ANIE1777>3.0.CO;2-ESearch in Google Scholar

[17] Nishiyabu, R., & Anzenbacher, P., Jr. (2006). 1,3-indane-based chromogenic calixpyrroles with push-pull chromophores: Synthesis and anion sensing. Organic Letters, 8, 359–362. DOI: 10.1021/ol0521782. http://dx.doi.org/10.1021/ol052178210.1021/ol0521782Search in Google Scholar

[18] Piatek, P., Lynch, V. M., & Sessler, J. L. (2004). Calix[4]pyrrole[2]carbazole: A new kind of expanded calixpyrrole. Journal of the American Chemical Society, 126, 16073–16076. DOI: 10.1021/ja045218q. http://dx.doi.org/10.1021/ja045218q10.1021/ja045218qSearch in Google Scholar

[19] Qian, G., Li, X., & Wang, Z. (2009). Visible and near-infrared chemosensor for colorimetric and ratiometric detection of cyanide. Journal of Materials Chemistry, 19, 522–530. DOI: 10.1039/b813478b. http://dx.doi.org/10.1039/b813478b10.1039/B813478BSearch in Google Scholar

[20] Shiraishi, Y., Maehara, H., Sugii, T., Wang, D., & Hirai, T. (2009). A BODIPY-indole conjugate as a colorimetric and fluorometric probe for selective fluoride anion detection. Tetrahedron Letters, 50, 4293–4296. DOI: 10.1016/j.tetlet.2009.05.018. http://dx.doi.org/10.1016/j.tetlet.2009.05.01810.1016/j.tetlet.2009.05.018Search in Google Scholar

[21] Shortreed, M., Kopelman, R., Kuhn, M., & Hoyland, B. (1996). Fluorescent fiber-optic calcium sensor for physiological measurements. Analytical Chemistry, 68, 1414–1418. DOI: 10.1021/ac950944k. http://dx.doi.org/10.1021/ac950944k10.1021/ac950944kSearch in Google Scholar

[22] Valeur, B. (2002). Molecular fluorescence: Principles and applications. New York, NY, USA: Wiley-VCH. Search in Google Scholar

[23] Zhang, X., Li, C., Cheng, X., Wang, X., & Zhang, B. (2008a). A near-infrared croconium dye-based colorimetric chemodosimeter for biological thiols and cyanide anion. Sensors and Actuators B: Chemical, 129, 152–157. DOI: 10.1016/j.snb.2007.07.094. http://dx.doi.org/10.1016/j.snb.2007.07.09410.1016/j.snb.2007.07.094Search in Google Scholar

[24] Zhang, X., Xiao, Y., & Qian, X. (2008b). Highly efficient energy transfer in the light harvesting system composed of three kinds of boron-dipyrromethene derivatives. Organic Letters, 10, 29–32. DOI: 10.1021/ol702381j. http://dx.doi.org/10.1021/ol702381j10.1021/ol702381jSearch in Google Scholar PubMed

Published Online: 2011-5-21
Published in Print: 2011-8-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Lipid retention of novel pressurized extraction vessels as a function of the number of static and flushing cycles, flush volume, and flow rate
  2. Determination of curcuminoids in substances and dosage forms by cyclodextrin-mediated capillary electrophoresis with diode array detection
  3. Interaction of Moringa oleifera seed lectin with humic acid
  4. Hybrid process scheme for the synthesis of ethyl lactate: conceptual design and analysis
  5. Zinc catalyst recycling in the preparation of (all-rac)-α-tocopherol from trimethylhydroquinone and isophytol
  6. Denitrification of simulated nitrate-rich wastewater using sulfamic acid and zinc scrap
  7. Anaerobic treatment of biodiesel by-products in a pilot scale reactor
  8. Preparation of magnesium hydroxide from nitrate aqueous solution
  9. Impact of the type of anodic film formed and deposition time on the characteristics of porous anodic aluminium oxide films containing Ni metal
  10. Synthesis and crystal and molecular structures of N,N′-methylenedipyridinium tetrachlorozincate(II) and N,N′-methylenedipyridinium tetrachlorocadmate(II)
  11. Effects of denaturing acid on the self-association behaviour of poly(ethylene glycol)-block-poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer in ethanol
  12. Properties of poly(γ-benzyl l-glutamate) membrane modified by polyurethane containing carboxyl group
  13. Theoretical thermo-optical patterns relevant to glass crystallisation
  14. Morphology dependence of 1,2-diphenylethylenediamine-derived organogelator templates in solvents and their influence in the production of nanostructured silica
  15. Ferric hydrogensulphate as a recyclable catalyst for the synthesis of fluorescein derivatives
  16. An alternative synthetic process of p-acetaminobenzenesulfonyl chloride through combined chlorosulfonation by HClSO3 and PCl5
  17. An efficient and novel one-pot synthesis of 2,4,5-triaryl-1H-imidazoles catalyzed by UO2(NO3)2·6H2O under heterogeneous conditions
  18. Stereoselective synthesis of the polar part of mycestericins E and G
  19. A regio- and stereoselective three-component synthesis of 5-(trifluoromethyl)-4,5,6,7-tetrahydro-[1,2,4]triazolo[1,5-a]pyrimidine derivatives under solvent-free conditions
  20. Precautions in using global kinetic and thermodynamic models for characterization of drug release from multivalent supports
  21. A sandwich anion receptor by a BODIPY dye bearing two calix[4]pyrrole units
  22. What causes iron-sulphur bonds in active sites of one-iron superoxide reductase and two-iron superoxide reductase to differ?
  23. MTD-PLS and docking study for a series of substituted 2-phenylindole derivatives with oestrogenic activity
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0033-2/html
Scroll to top button