Startseite Preparation of magnesium hydroxide from nitrate aqueous solution
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Preparation of magnesium hydroxide from nitrate aqueous solution

  • Pavel Fellner EMAIL logo , Ján Híveš , Vladimír Khandl , Milan Králik , Jana Jurišová , Tibor Liptaj und Ladislav Pach
Veröffentlicht/Copyright: 21. Mai 2011
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Nucleation of Mg(OH)2 was investigated by measuring the electrical conductivity and pH of the Mg(NO3)2 reaction solution to which ammonia containing different amounts of NH4NO3 was added. NH4NO3 increases solubility and slows down precipitation of Mg(OH)2 in the system. Data are presented on the influence of NH4NO3 on the solubility of Mg(OH)2 at 25°C. The phenomena observed can be explained by the solvation effect of nitrate ions brought to the system with the addition of ammonium nitrate, which was proved by NMR spectroscopy. When the mass fraction of NH4NO3 exceeds 15 %, homogeneous nucleation does not proceed. It was found that seeding of the system with Mg(OH)2 crystals only influenced the rate of Mg(OH)2 crystallisation, not the size and shape of the crystals. Primary crystals are smaller than 0.1 μm. The large difference in the surface energy of individual crystal planes leads to oriented agglomeration. This process is accelerated in a pressure reactor at 130°C. The resulting polycrystals are hexagonal plates 0.2 μm thin with a diameter of 1–2 μm. Under variable reaction conditions, agglomerates as big as 30 μm can be prepared.

[1] Alivisatos, A. P. (1997). Scaling law for structural metastability in semiconductor nanocrystals. Berichte der Bunsengesellschaft für physikalische Chemie, 101, 1573–1577. DOI: 10.1002/bbpc.19971011104. 10.1002/bbpc.19971011104Suche in Google Scholar

[2] Henrist, C., Mathieu, J.-P., Vogels, C., Rulmont, A., & Cloots, R. (2003). Morphological study of magnesium hydroxide nanoparticles precipitated in dilute aqueous solution. Journal of Crystal Growth, 249, 321–330. DOI: 10.1016/S0022-0248(02)02068-7. http://dx.doi.org/10.1016/S0022-0248(02)02068-710.1016/S0022-0248(02)02068-7Suche in Google Scholar

[3] Huang, L., Li, D.-Q., Lin, Y.-J., Wei, M., Evans, D. G., & Duan, X. (2005). Controllable preparation of Nano-MgO and investigation of its bactericidal properties. Journal of Inorganic Biochemistry, 99, 986–993. DOI: 10.1016/j.jinorgbio.2004.12.022. http://dx.doi.org/10.1016/j.jinorgbio.2004.12.02210.1016/j.jinorgbio.2004.12.022Suche in Google Scholar

[4] Jia, B., & Gao, L. (2006). Morphology transformation of nanoscale magnesium hydroxide: from nanosheets to nanodisks. Journal of the American Ceramic Society, 89, 3881–3884. DOI: 10.1111/j.1551-2916.2006.01319.x. http://dx.doi.org/10.1111/j.1551-2916.2006.01319.x10.1111/j.1551-2916.2006.01319.xSuche in Google Scholar

[5] Klein, D. H., Smith, M. D., & Driy, J. A. (1967). Homogeneous nucleation of magnesium hydroxide. Talanta, 14, 937–940. DOI: 10.1016/0039-9140(67)80126-7. http://dx.doi.org/10.1016/0039-9140(67)80126-710.1016/0039-9140(67)80126-7Suche in Google Scholar

[6] Kumari, L., Li, W. Z., Vannoy, C. H., Leblanc, R. M., & Wang, D. Z. (2009). Synthesis, characterization and optical properties of Mg(OH)2 micro-/nanostructure and its conversion to MgO. Ceramics International, 35, 3355–3364. DOI: 10.1016/j.ceramint.2009.05.035. http://dx.doi.org/10.1016/j.ceramint.2009.05.03510.1016/j.ceramint.2009.05.035Suche in Google Scholar

[7] Lide, D. R. (1994). CRC handbook of chemistry and physics (75th ed., pp. 4–72). Boca Raton, FL, USA: CRC Press. Suche in Google Scholar

[8] Mullin, J. W., Murphy, J. D., Söhnel, O., & Spoors, G. (1989). Aging of precipitated magnesium hydroxide. Industrial & Engineering Chemistry Research, 28, 1725–1730. DOI: 10.1021/ie00095a025. http://dx.doi.org/10.1021/ie00095a02510.1021/ie00095a025Suche in Google Scholar

[9] Niu, H., Yang, Q., Tang, K., & Xie, Y. (2006). A simple solution calcination route to porous MgO nanoplates. Microporous and Mesoporous Materials, 96, 428–433. DOI: 10.1016/j.micromeso.2006.07.013. http://dx.doi.org/10.1016/j.micromeso.2006.07.01310.1016/j.micromeso.2006.07.013Suche in Google Scholar

[10] Penn, R. L., & Banfield, J. F. (1998). Imperfect oriented attachment: Dislocation generation in defect-free nanocrystals. Science, 281, 969–971. DOI: 10.1126/science.281.5379.969. http://dx.doi.org/10.1126/science.281.5379.96910.1126/science.281.5379.969Suche in Google Scholar PubMed

[11] Richards, R., Li, W., Decker, S., Davidson, C., Koper, O., Zaikovski, V., Volodin, A., Rieker, T., & Klabunde, K. J. (2000). Consolidation of metal oxide nanocrystals. Reactive pellets with controllable pore structure that represent a new family of porous, inorganic materials. Journal of the American Chemical Society, 122, 4921–4925. DOI: 10.1021/ja994383g. http://dx.doi.org/10.1021/ja994383g10.1021/ja994383gSuche in Google Scholar

[12] Rothon, R. N., & Hornsby, P. R. (1996). Flame retardant effects of magnesium hydroxide. Polymer Degradation and Stability, 54, 383–385. DOI: 10.1016/S0141-3910(96)00067-5. http://dx.doi.org/10.1016/S0141-3910(96)00067-510.1016/S0141-3910(96)00067-5Suche in Google Scholar

[13] Xue, D., Yan, X., & Wang, L. (2009). Production of specific Mg(OH)2 granules by modifying crystallization conditions. Powder Technology, 191, 98–106. DOI: 10.1016/j.powtec.2008.09.012. http://dx.doi.org/10.1016/j.powtec.2008.09.01210.1016/j.powtec.2008.09.012Suche in Google Scholar

[14] Yang, Y.-F., Wu, X.-F., Hu, G.-S., & Wang, B.-B. (2008). Effects of stearic acid on synthesis of magnesium hydroxide via direct precipitation. Journal of Crystal Growth, 310, 3557–3560. DOI: 10.1016/j.jcrysgro.2008.05.006. http://dx.doi.org/10.1016/j.jcrysgro.2008.05.00610.1016/j.jcrysgro.2008.05.006Suche in Google Scholar

[15] Yu, J. C., Xu, A., Zhang, L., Song, R., & Wu, L. (2004). Synthesis and characterization of porous magnesium hydroxide and oxide nanoplates. The Journal of Physical Chemistry B, 108, 64–70. DOI: 10.1021/jp035340w. http://dx.doi.org/10.1021/jp035340w10.1021/jp035340wSuche in Google Scholar

Published Online: 2011-5-21
Published in Print: 2011-8-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Lipid retention of novel pressurized extraction vessels as a function of the number of static and flushing cycles, flush volume, and flow rate
  2. Determination of curcuminoids in substances and dosage forms by cyclodextrin-mediated capillary electrophoresis with diode array detection
  3. Interaction of Moringa oleifera seed lectin with humic acid
  4. Hybrid process scheme for the synthesis of ethyl lactate: conceptual design and analysis
  5. Zinc catalyst recycling in the preparation of (all-rac)-α-tocopherol from trimethylhydroquinone and isophytol
  6. Denitrification of simulated nitrate-rich wastewater using sulfamic acid and zinc scrap
  7. Anaerobic treatment of biodiesel by-products in a pilot scale reactor
  8. Preparation of magnesium hydroxide from nitrate aqueous solution
  9. Impact of the type of anodic film formed and deposition time on the characteristics of porous anodic aluminium oxide films containing Ni metal
  10. Synthesis and crystal and molecular structures of N,N′-methylenedipyridinium tetrachlorozincate(II) and N,N′-methylenedipyridinium tetrachlorocadmate(II)
  11. Effects of denaturing acid on the self-association behaviour of poly(ethylene glycol)-block-poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer in ethanol
  12. Properties of poly(γ-benzyl l-glutamate) membrane modified by polyurethane containing carboxyl group
  13. Theoretical thermo-optical patterns relevant to glass crystallisation
  14. Morphology dependence of 1,2-diphenylethylenediamine-derived organogelator templates in solvents and their influence in the production of nanostructured silica
  15. Ferric hydrogensulphate as a recyclable catalyst for the synthesis of fluorescein derivatives
  16. An alternative synthetic process of p-acetaminobenzenesulfonyl chloride through combined chlorosulfonation by HClSO3 and PCl5
  17. An efficient and novel one-pot synthesis of 2,4,5-triaryl-1H-imidazoles catalyzed by UO2(NO3)2·6H2O under heterogeneous conditions
  18. Stereoselective synthesis of the polar part of mycestericins E and G
  19. A regio- and stereoselective three-component synthesis of 5-(trifluoromethyl)-4,5,6,7-tetrahydro-[1,2,4]triazolo[1,5-a]pyrimidine derivatives under solvent-free conditions
  20. Precautions in using global kinetic and thermodynamic models for characterization of drug release from multivalent supports
  21. A sandwich anion receptor by a BODIPY dye bearing two calix[4]pyrrole units
  22. What causes iron-sulphur bonds in active sites of one-iron superoxide reductase and two-iron superoxide reductase to differ?
  23. MTD-PLS and docking study for a series of substituted 2-phenylindole derivatives with oestrogenic activity
Heruntergeladen am 6.9.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0038-x/html?srsltid=AfmBOooTkq-ncPWasKxFaAn5IZgVz2VtHMGyKeCmhDTp6yh8cNv5Ydvh
Button zum nach oben scrollen