Abstract
An efficient one-pot method for regio- and stereoselective synthesis of 5-(trifluoromethyl)-4,5,6,7-tetrahydro-[1,2,4]triazolo[1,5-a]pyrimidines under solvent-free and catalyst-free conditions has been developed. The method involves employing a three-component condensation reaction of an aromatic aldehyde and ethyl 4,4,4-trifluoro-3-oxobutanoate or 1,1,1-trifluoropentane-2,4-dione in the presence of 1,2,4-triazol-3-amine at 90°C.
[1] Abdel-Rahman, H. M., El-Koussi, N. A., & Hassan, H. Y. (2009). Fluorinated 1,2,4-triazolo[1,5-a]pyrimidine-6-carboxylic acid derivatives as antimycobacterial agents. Archiv der Pharmazie, 342, 94–99. DOI: 10.1002/ardp.200800113. http://dx.doi.org/10.1002/ardp.20080011310.1002/ardp.200800113Suche in Google Scholar PubMed
[2] Cavallaro, C. L., Harikrishnan, L. S., Chi, F., Dodd, D., & Purandare, A. (2008). Preparation of 2,7-diaminosubstituted-[1,2,4]triazolo[1,5-a]pyrimidine-6-carbonitriles by solid-phase synthesis. Journal of Combinatorial Chemistry, 10, 28–30. DOI: 10.1021/cc700161r. http://dx.doi.org/10.1021/cc700161r10.1021/cc700161rSuche in Google Scholar PubMed
[3] Chambers, R. D. (2004). Fluorine in organic chemistry. Oxford, UK: Blackwell. http://dx.doi.org/10.1002/978144430537110.1002/9781444305371Suche in Google Scholar
[4] Chebanov, V. A., Muravyova, E. A., Desenko, S. M., Musatov, V. I., Knyazeva, I. V., Shishkina, S. V., Shishkin, O. V., & Kappe, C. O. (2006). Microwave-assisted three-component synthesis of 7-aryl-2-alkylthio-4,7-dihydro-1,2,4-triazolo[1,5-a]-pyrimidine-6-carboxamides and their selective reduction. Journal of Combinatorial Chemistry, 8, 427–434. DOI: 10.1021/cc060021a. http://dx.doi.org/10.1021/cc060021a10.1021/cc060021aSuche in Google Scholar PubMed
[5] Chebanov, V. A., Sakhno, Y. I., Desenko, S. M., Shishkina, S. V., Musatov, V. I., Shishkin, O. V., & Knyazeva, I. V. (2005). Three-component procedure for the synthesis of 5-aryl-5,8-dihydroazolo[1,5-a]pyrimidine-7-carboxylic acids. Synthesis, 2005, 2597–2601. DOI: 10.1055/s-2005-872073. http://dx.doi.org/10.1055/s-2005-87207310.1055/s-2005-872073Suche in Google Scholar
[6] Chen, C.-N., Lv, L.-L., Ji, F.-Q., Chen, Q., Xu, H., Niu, C.-W., Xi, Z., & Yang, G.-F. (2009). Design and synthesis of N-2,6-difluorophenyl-5-methoxyl-1,2,4-triazolo[1,5-a]-pyrimidine-2-sulfonamide as acetohydroxyacid synthase inhibitor. Bioorganic & Medicinal Chemistry, 17, 3011–3017. DOI: 10.1016/j.bmc.2009.03.018. http://dx.doi.org/10.1016/j.bmc.2009.03.01810.1016/j.bmc.2009.03.018Suche in Google Scholar PubMed
[7] Chen, Q., Zhu, X.-L., Jiang, L.-L., Liu, Z.-M., & Yang, G.-F. (2008). Synthesis, antifungal activity and CoMFA analysis of novel 1,2,4-triazolo[1,5-a]-pyrimidine derivatives. European Journal of Medicinal Chemistry, 43, 595–603. DOI: 10.1016/j.ejmech.2007.04.021. http://dx.doi.org/10.1016/j.ejmech.2007.04.02110.1016/j.ejmech.2007.04.021Suche in Google Scholar PubMed
[8] Chernyshev, V. M., Astakhov, A. V., & Starikova, Z. A. (2010). Reaction of 1-substituted 3,5-diamino-1,2,4-triazoles with β-keto esters: synthesis and new rearrangement of mesoionic 3-amino-2H-[1,2,4]triazolo[4,3-a]pyrimidin-5-ones. Tetrahedron, 66, 3301–3313. DOI: 10.1016/j.tet.2010.03.009. http://dx.doi.org/10.1016/j.tet.2010.03.00910.1016/j.tet.2010.03.009Suche in Google Scholar
[9] Clark, J. H. (1999). Green chemistry: challenges and opportunities. Green Chemistry, 1, 1–8. DOI: 10.1039/a807961g. http://dx.doi.org/10.1039/a807961g10.1039/a807961gSuche in Google Scholar
[10] Druzhinin, S. V., Balenkova, E. S., & Nenajdenko, V. G. (2007). Recent advances in the chemistry of α,β-unsaturated trifluoromethylketones. Tetrahedron, 63, 7753–7808. DOI: 10.1016/j.tet.2007.04.029. http://dx.doi.org/10.1016/j.tet.2007.04.02910.1016/j.tet.2007.04.029Suche in Google Scholar
[11] Hiyama, T. (2000). Organofluorine compounds: Chemistry and applications. Berlin, Germany: Springer-Verlag. 10.1007/978-3-662-04164-2Suche in Google Scholar
[12] Johnson, T. C., Martin, T. P., Mann, R. K., & Pobanz, M. A. (2009). Penoxsulam—structure-activity relationships of triazolopyrimidine sulfonamides. Bioorganic & Medicinal Chemistry, 17, 4230–4240. DOI: 10.1016/j.bmc.2009.02.010. http://dx.doi.org/10.1016/j.bmc.2009.02.01010.1016/j.bmc.2009.02.010Suche in Google Scholar PubMed
[13] Kirsch, P. (2004). Modern fluoroorganic chemistry: Synthesis, reactivity, applications. Weinheim, Germany: Wiley-VCH. 10.1002/352760393XSuche in Google Scholar
[14] Kleschick, W. A., Gerwick, B. C., Carson, C. M., Monte, W. T., & Snider, S. W. (1992). DE-498, a new acetolactate synthase inhibiting herbicide with multicrop selectivity. Journal of Agricultural and Food Chemistry, 40, 1083–1085. DOI: 10.1021/jf00018a035. http://dx.doi.org/10.1021/jf00018a03510.1021/jf00018a035Suche in Google Scholar
[15] Lakomska, I. (2009). Molecular structure and antitumor activity of platinum(II) complexes containing purine analogs. Inorganica Chimica Acta, 362, 669–681. DOI: 10.1016/j.ica.2008.02.030. http://dx.doi.org/10.1016/j.ica.2008.02.03010.1016/j.ica.2008.02.030Suche in Google Scholar
[16] Novinson, T., Springer, R. H., O’Brien, D. E., Scholten, M. B., Miller, J. P., & Robins, R. K. (1982). 2-(Alkylthio)-1,2,4-triazolo[1,5-a]-pyrimidines as adenosine 3′,5′-monophosphate phosphodiesterase inhibitors with potential as new cardiovascular agents. Journal of Medicinal Chemistry, 25, 420–426. DOI: 10.1021/jm00346a017. http://dx.doi.org/10.1021/jm00346a01710.1021/jm00346a017Suche in Google Scholar
[17] Pang, W., Zhu, S. F., Jiang, H., & Zhu, S. Z. (2006). Transition metal-catalyzed formation of CF3-substituted α,β-unsaturated alkene and the synthesis of α-trifluoromethyl substituted β-amino ester. Tetrahedron, 62, 11760–11765. DOI: 10.1016/j.tet.2006.09.041. http://dx.doi.org/10.1016/j.tet.2006.09.04110.1016/j.tet.2006.09.041Suche in Google Scholar
[18] Prakash, G. K. S., & Mandal, M. (2001). Nucleophilic trifluoromethylation tamed. Journal of Fluorine Chemistry, 112, 123–131. DOI: 10.1016/S0022-1139(01)00477-8. http://dx.doi.org/10.1016/S0022-1139(01)00477-810.1016/S0022-1139(01)00477-8Suche in Google Scholar
[19] Pryadeina, M. V., Burgart, Y. V., Saloutin, V. I., Kodess, M. I., Ulomskii, E. N., & Rusinov, V. L. (2004). Synthesis of 7-alkyl(aryl)-6-alkoxycarbonyl-5-fluoroalkyl-1,2,4-tri(tetr)azolo[1,5-a]-pyrimidines. Russian Journal of Organic Chemistry, 40, 902–907. DOI: 10.1023/B:RUJO.0000044558.47152.65. http://dx.doi.org/10.1023/B:RUJO.0000044558.47152.6510.1023/B:RUJO.0000044558.47152.65Suche in Google Scholar
[20] Rahmati, A. (2010). Synthesis of 4-aryl-3-methyl-6-oxo-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-b]pyridine-5-carbonitrile via a one-pot, three-component reaction. Tetrahedron Letters, 51, 2967–2970. DOI: 10.1016/j.tetlet.2010.03.109. http://dx.doi.org/10.1016/j.tetlet.2010.03.10910.1016/j.tetlet.2010.03.109Suche in Google Scholar
[21] Richardson, C. M., Williamson, D. S., Parratt, M. J., Borgognoni, J., Cansfield, A. D., Dokurno, P., Francis, G. L., Howes, R., Moore, J. D., Murray, J. B., Robertson, A., Surgenor, A. E., & Torrance, C. J. (2006). Triazolo[1,5-a]-pyrimidines as novel CDK2 inhibitors: Protein structureguided design and SAR. Bioorganic & Medicinal Chemistry Letters, 16, 1353–1357. DOI: 10.1016/j.bmcl.2005.11.048. http://dx.doi.org/10.1016/j.bmcl.2005.11.04810.1016/j.bmcl.2005.11.048Suche in Google Scholar PubMed
[22] Ruisi, G., Canfora, L., Bruno, G., Rotondo, A., Mastropietro, T. F., Debbia, E. A., Girasolo, M. A., & Megna, B. (2010). Triorganotin(IV) derivatives of 7-amino-2-(methylthio)[1,2,4] triazolo[1,5-a]-pyrimidine-6-carboxylic acid. Synthesis, spectroscopic characterization, in vitro antimicrobial activity and X-ray crystallography. Journal of Organometallic Chemistry, 695, 546–551. DOI: 10.1016/j.jorganchem.2009.11.019. http://dx.doi.org/10.1016/j.jorganchem.2009.11.01910.1016/j.jorganchem.2009.11.019Suche in Google Scholar
[23] Schlosser, M. (2006). CF3-bearing aromatic and heterocyclic building blocks. Angewandte Chemie International Edition, 45, 5432–5446. DOI: 10.1002/anie.200600449. http://dx.doi.org/10.1002/anie.20060044910.1002/anie.200600449Suche in Google Scholar PubMed
[24] Serey, R. A., Torres, R., & Latorre, B. A. (2007). Pre- and postinfection activity of new fungicides against Botrytis cinérea and other fungi causing decay of table grapes. Ciencia e Investigación Agraria, 34, 215–224. DOI: 10.4067/S0718-16202007000300005. http://dx.doi.org/10.4067/S0718-1620200700030000510.4067/S0718-16202007000300005Suche in Google Scholar
[25] Shaaban, M. R., Saleh, T. S., Mayhoub, A. S., Mansour, A., & Farag, A. M. (2008). Synthesis and analgesic/anti-inflammatory evaluation of fused heterocyclic ring systems incorporating phenylsulfonyl moiety. Bioorganic & Medicinal Chemistry, 16, 6344–6352. DOI: 10.1016/j.bmc.2008.05.011. http://dx.doi.org/10.1016/j.bmc.2008.05.01110.1016/j.bmc.2008.05.011Suche in Google Scholar PubMed
[26] Shaabani, A., Farhangi, E., & Rahmati, A. (2006). Synthesis of tetrahydrobenzimidazo[1,2-b]quinazolin-1(2H)-one and tetrahydro-1,2,4-triazolo[5,1-b]quinazolin-8(4H)-one ring systems under solvent-free conditions. Combinatorial Chemistry & High Throughput Screening, 9, 771–776. DOI: 10.2174/138620706779026060. http://dx.doi.org/10.2174/13862070677902606010.2174/138620706779026060Suche in Google Scholar PubMed
[27] Shaabani, A., Rahmati, A., & Farhangi, E. (2007a). Water promoted one-pot synthesis of 2′-aminobenzothiazolomethyl naphthols and 5-(2′-aminobenzothiazolomethyl)-6-hydroxyquinolines. Tetrahedron Letters, 48, 7291–7294. DOI: 10.1016/j.tetlet.2007.08.042. http://dx.doi.org/10.1016/j.tetlet.2007.08.04210.1016/j.tetlet.2007.08.042Suche in Google Scholar
[28] Shaabani, A., Rahmati, A., & Naderi, S. (2005). A novel one-pot three-component reaction: Synthesis of triheterocyclic 4H-pyrimido[2,1-b]benzazoles ring systems. Bioorganic & Medicinal Chemistry Letters, 15, 5553–5557. DOI: 10.1016/j.bmcl.2005.08.101. http://dx.doi.org/10.1016/j.bmcl.2005.08.10110.1016/j.bmcl.2005.08.101Suche in Google Scholar PubMed
[29] Shaabani, A., Rahmati, A., Rezayan, A. H., Darvishi, M., Badri, Z., & Sarvari, A. (2007b). Clean synthesis in water: Uncatalyzed three-component condensation reaction of 3-amino-1,2,4-triazole or 2-aminobenzimidazole with aldehyde in the presence of activated CH-acids. QSAR & Combinatorial Science, 26, 973–979. DOI: 10.1002/qsar.200620024. http://dx.doi.org/10.1002/qsar.20062002410.1002/qsar.200620024Suche in Google Scholar
[30] Shiota, T., Yamamori, T., Sakai, K., Kiyokawa, M., Honma, T., Ogawa, M., Hayashi, K., Ishizuka, N., Matsumura, K.-I., Hara, M., Fujimoto, M., Kawabata, T., & Nakajima, S. (1999). Synthesis and structure-activity relationship of a new series of potent angiotensin II receptor antagonists: Pyrazolo[1,5-α]pyrimidine derivatives. Chemical & Pharmaceutical Bulletin, 47, 928–938. 10.1248/cpb.47.928Suche in Google Scholar PubMed
[31] Tanaka, K., & Toda, F. (2000). Solvent-free organic synthesis. Chemical Reviews, 100, 1025–1074. DOI: 10.1021/cr940089p. http://dx.doi.org/10.1021/cr940089p10.1021/cr940089pSuche in Google Scholar PubMed
[32] Uneyama, K. (2006). Organofluorine chemistry. Oxford, UK: Blackwell. http://dx.doi.org/10.1002/978047098858910.1002/9780470988589Suche in Google Scholar
[33] Varma, R. S. (1999). Solvent-free organic syntheses using supported reagents and microwave irradiation. Green Chemistry, 1, 43–55. DOI: 10.1039/a808223e. http://dx.doi.org/10.1039/a808223e10.1039/a808223eSuche in Google Scholar
[34] Vu, C. B., Shields, P., Peng, B., Kumaravel, G., Jin, X., Phadke, D., Wang, J., Engber, T., Ayyub, E., & Petter, R. C. (2004). Triamino derivatives of triazolotriazine and triazolopyrimidine as adenosine A2a receptor antagonists. Bioorganic & Medicinal Chemistry Letters, 14, 4835–4838. DOI: 10.1016/j.bmcl.2004.07.048. http://dx.doi.org/10.1016/j.bmcl.2004.07.04810.1016/j.bmcl.2004.07.048Suche in Google Scholar PubMed
[35] Zhang, N., Ayral-Kaloustian, S., Nguyen, T., Afragola, J., Hernandez, R., Lucas, J., Gibbons, J., & Beyer, C. (2007a). Synthesis and SAR of [1,2,4]triazolo[1,5-α]pyrimidines, a class of anticancer agents with a unique mechanism of tubulin inhibition. Journal of Medicinal Chemistry, 50, 319–327. DOI: 10.1021/jm060717i. http://dx.doi.org/10.1021/jm060717i10.1021/jm060717iSuche in Google Scholar PubMed
[36] Zhang, N., Ayral-Kaloustian, S., Nguyen, T., Hernandez, R., & Beyer, C. (2007b). 2-Cyanoaminopyrimidines as a class of antitumor agents that promote tubulin polymerization. Bioorganic & Medicinal Chemistry Letters, 17, 3003–3005. DOI: 10.1016/j.bmcl.2007.03.070. http://dx.doi.org/10.1016/j.bmcl.2007.03.07010.1016/j.bmcl.2007.03.070Suche in Google Scholar PubMed
[37] Zhu, J., & Bienaymé, H. (2005). Multicomponent reactions. Weinheim, Germany: Wiley-VCH. http://dx.doi.org/10.1002/352760511810.1002/3527605118Suche in Google Scholar
© 2011 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Lipid retention of novel pressurized extraction vessels as a function of the number of static and flushing cycles, flush volume, and flow rate
- Determination of curcuminoids in substances and dosage forms by cyclodextrin-mediated capillary electrophoresis with diode array detection
- Interaction of Moringa oleifera seed lectin with humic acid
- Hybrid process scheme for the synthesis of ethyl lactate: conceptual design and analysis
- Zinc catalyst recycling in the preparation of (all-rac)-α-tocopherol from trimethylhydroquinone and isophytol
- Denitrification of simulated nitrate-rich wastewater using sulfamic acid and zinc scrap
- Anaerobic treatment of biodiesel by-products in a pilot scale reactor
- Preparation of magnesium hydroxide from nitrate aqueous solution
- Impact of the type of anodic film formed and deposition time on the characteristics of porous anodic aluminium oxide films containing Ni metal
- Synthesis and crystal and molecular structures of N,N′-methylenedipyridinium tetrachlorozincate(II) and N,N′-methylenedipyridinium tetrachlorocadmate(II)
- Effects of denaturing acid on the self-association behaviour of poly(ethylene glycol)-block-poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer in ethanol
- Properties of poly(γ-benzyl l-glutamate) membrane modified by polyurethane containing carboxyl group
- Theoretical thermo-optical patterns relevant to glass crystallisation
- Morphology dependence of 1,2-diphenylethylenediamine-derived organogelator templates in solvents and their influence in the production of nanostructured silica
- Ferric hydrogensulphate as a recyclable catalyst for the synthesis of fluorescein derivatives
- An alternative synthetic process of p-acetaminobenzenesulfonyl chloride through combined chlorosulfonation by HClSO3 and PCl5
- An efficient and novel one-pot synthesis of 2,4,5-triaryl-1H-imidazoles catalyzed by UO2(NO3)2·6H2O under heterogeneous conditions
- Stereoselective synthesis of the polar part of mycestericins E and G
- A regio- and stereoselective three-component synthesis of 5-(trifluoromethyl)-4,5,6,7-tetrahydro-[1,2,4]triazolo[1,5-a]pyrimidine derivatives under solvent-free conditions
- Precautions in using global kinetic and thermodynamic models for characterization of drug release from multivalent supports
- A sandwich anion receptor by a BODIPY dye bearing two calix[4]pyrrole units
- What causes iron-sulphur bonds in active sites of one-iron superoxide reductase and two-iron superoxide reductase to differ?
- MTD-PLS and docking study for a series of substituted 2-phenylindole derivatives with oestrogenic activity
Artikel in diesem Heft
- Lipid retention of novel pressurized extraction vessels as a function of the number of static and flushing cycles, flush volume, and flow rate
- Determination of curcuminoids in substances and dosage forms by cyclodextrin-mediated capillary electrophoresis with diode array detection
- Interaction of Moringa oleifera seed lectin with humic acid
- Hybrid process scheme for the synthesis of ethyl lactate: conceptual design and analysis
- Zinc catalyst recycling in the preparation of (all-rac)-α-tocopherol from trimethylhydroquinone and isophytol
- Denitrification of simulated nitrate-rich wastewater using sulfamic acid and zinc scrap
- Anaerobic treatment of biodiesel by-products in a pilot scale reactor
- Preparation of magnesium hydroxide from nitrate aqueous solution
- Impact of the type of anodic film formed and deposition time on the characteristics of porous anodic aluminium oxide films containing Ni metal
- Synthesis and crystal and molecular structures of N,N′-methylenedipyridinium tetrachlorozincate(II) and N,N′-methylenedipyridinium tetrachlorocadmate(II)
- Effects of denaturing acid on the self-association behaviour of poly(ethylene glycol)-block-poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer in ethanol
- Properties of poly(γ-benzyl l-glutamate) membrane modified by polyurethane containing carboxyl group
- Theoretical thermo-optical patterns relevant to glass crystallisation
- Morphology dependence of 1,2-diphenylethylenediamine-derived organogelator templates in solvents and their influence in the production of nanostructured silica
- Ferric hydrogensulphate as a recyclable catalyst for the synthesis of fluorescein derivatives
- An alternative synthetic process of p-acetaminobenzenesulfonyl chloride through combined chlorosulfonation by HClSO3 and PCl5
- An efficient and novel one-pot synthesis of 2,4,5-triaryl-1H-imidazoles catalyzed by UO2(NO3)2·6H2O under heterogeneous conditions
- Stereoselective synthesis of the polar part of mycestericins E and G
- A regio- and stereoselective three-component synthesis of 5-(trifluoromethyl)-4,5,6,7-tetrahydro-[1,2,4]triazolo[1,5-a]pyrimidine derivatives under solvent-free conditions
- Precautions in using global kinetic and thermodynamic models for characterization of drug release from multivalent supports
- A sandwich anion receptor by a BODIPY dye bearing two calix[4]pyrrole units
- What causes iron-sulphur bonds in active sites of one-iron superoxide reductase and two-iron superoxide reductase to differ?
- MTD-PLS and docking study for a series of substituted 2-phenylindole derivatives with oestrogenic activity