Abstract
Lamotrigine (LTG) is an antiepileptic drug used for the prevention of convulsions. Except several known side effects, hepatic dysfunction is also reported. Hepatotoxic side effects occur due to the dichlorophenyl moiety which develops an abnormally low level of glutathione. Depletion of glutathione causes oxidative stress and hepatic cell damage. The goal of the present study was to test the action and side effects of the three compounds synthesised and compared to LTG. Three amide prodrugs of LTG were synthesised by its reaction with N-acetylamino acids, viz, glycine, glutamic acid, and methionine. Purified synthesised prodrugs were subjected to thin layer chromatography, melting point, solubility and partition coefficients determination and characterised by UV, FTIR, 1H and 13C NMR spectroscopy. The synthesised prodrugs were subjected to in vitro hydrolysis and to anticonvulsant and hepatotoxic activity studies. Significant reduction in hepatotoxicity and comparable anticonvulsant activities were obtained in all synthesised prodrugs as compared to LTG.
[1] Attwell, P. J. E., Singh Kent, N., Jane, D. E., Croucher, M. J., & Bradford, H. F. (1998). Anticonvulsant and glutamate release-inhibiting properties of the highly potent metabotropic glutamate receptor agonist (2S,2′R,3′R)-2-(2′,3′-dicarboxycyclopropyl)glycine (DCG-IV). Brain Research, 805, 138–143. DOI: 10.1016/S0006-8993(98)00698-2. http://dx.doi.org/10.1016/S0006-8993(98)00698-210.1016/S0006-8993(98)00698-2Suche in Google Scholar
[2] Barbosa, N. R., & Mídio, A. F. (2000). Validated highperformance liquid chromatographic method for the determination of lamotrigine in human plasma. Journal of Chromatography B, 741, 289–293. DOI: 10.1016/S0378-4347(00)00102-X. http://dx.doi.org/10.1016/S0378-4347(00)00102-X10.1016/S0378-4347(00)00102-XSuche in Google Scholar
[3] Dakin, H. D. (1929). The condensation of aromatic aldehydes with glycine and acetylglycine. The Journal of Biological Chemistry, LXXXII, 439–446. 10.1016/S0021-9258(20)78291-8Suche in Google Scholar
[4] du Vigneaud, V., Kilmer, G. W., Rachele, J. R., & Cohn, M. (1944). On the mechanism of the conversion in vivo of methionine to cystine. The Journal of Biological Chemistry, 155, 645–651. 10.1016/S0021-9258(18)51196-0Suche in Google Scholar
[5] Fayad, M., Choueiri, R., & Mikati, M. (2000). Potential hepatotoxicity of lamotrigine. Pediatric Neurology, 22, 49–52. DOI: 10.1016/S0887-8994(99)00106-X. http://dx.doi.org/10.1016/S0887-8994(99)00106-X10.1016/S0887-8994(99)00106-XSuche in Google Scholar
[6] GraphPad Software, Inc. (2009). GraphPad Prism, Version 5.0 for Windows. La Jolla, CA, USA: GraphPad Software, Inc. Suche in Google Scholar
[7] Maggs, J. L., Naisbitt, D. J., Tettey, J. N. A., Pirmohamed, M., & Park, B. K. (2000). Metabolism of lamotrigine to a reactive arene oxide intermediate. Chemical Research in Toxicology, 13, 1075–1081. DOI: 10.1021/tx0000825. http://dx.doi.org/10.1021/tx000082510.1021/tx0000825Suche in Google Scholar PubMed
[8] Makin, A. J., Fitt, S., & Williams, R. (1995). Fulminant hepatic failure induced by lamotrigine. British Medical Journal, 311, 292. 10.1136/bmj.311.7000.292bSuche in Google Scholar PubMed PubMed Central
[9] May, T. W., Rambeck, B., & Jürgens, U. (1996). Serum concentrations of lamotrigine in epileptic patients: the influence of dose and comedication. Therapeutic Drug Monitoring, 18, 523–531. DOI: 10.1097/00007691-199610000-00001. http://dx.doi.org/10.1097/00007691-199610000-0000110.1097/00007691-199610000-00001Suche in Google Scholar PubMed
[10] Meshkibaf, M. H., Ebrahimi, A., Ghodsi, R., & Ahmadi, A. (2006). Chronic effects of lamotrigine on liver function in adult male rats. Indian Journal of Clinical Biochemistry, 21, 161–164. DOI: 10.1007/BF02913087. http://dx.doi.org/10.1007/BF0291308710.1007/BF02913087Suche in Google Scholar PubMed PubMed Central
[11] Moeller, K. E., Wei, L., Jewell, A. D., & Carver, L. A. (2008). Acute hepatotoxicity associated with lamotrigine. The American Journal of Psychiatry, 165, 539–540. DOI: 10.1176/appi.ajp.2007.07050728. http://dx.doi.org/10.1176/appi.ajp.2007.0705072810.1176/appi.ajp.2007.07050728Suche in Google Scholar PubMed
[12] Nam, N.-H., Kim, Y., You, Y.-J., Hong, D.-H., Kim, H.-M., & Ahn, B.-Z. (2003). Water soluble prodrugs of the antitumor agent 3-[(3-amino-4-methoxy)phenyl]-2-(3,4,5-trimethoxyphenyl)cyclopent-2-ene-1-one. Bioorganic & Medicinal Chemistry, 11, 1021–1029. DOI: 10.1016/S0968-0896(02)00514-X. http://dx.doi.org/10.1016/S0968-0896(02)00514-X10.1016/S0968-0896(02)00514-XSuche in Google Scholar
[13] Nedelcheva, V. Gut, I., Souček, P., & Frantík, E. (1998). Cytochrome P450 catalyzed oxidation of monochlorobenzene, 1,2- and 1,4-dichlorobenzene in rat, mouse, and human liver microsomes. Chemico-Biological Interactions, 115, 53–70. DOI: 10.1016/S0009-2797(98)00058-1. http://dx.doi.org/10.1016/S0009-2797(98)00058-110.1016/S0009-2797(98)00058-1Suche in Google Scholar
[14] Overstreet, K., Costanza, C., Behling, C., Hassanin, T., & Masliah, E. (2002). Fatal progressive hepatic necrosis associated with lamotrigine treatment: A case report and literature review. Digestive Diseases and Sciences, 47, 1921–1925. DOI: 10.1023/A:1019627618972. http://dx.doi.org/10.1023/A:101962761897210.1023/A:1019627618972Suche in Google Scholar
[15] Pugazhendhy, S., Shrivastava, P. K., Sinha, S. K., & Shrivastava, S. K. (2010). Lamotrigine-dextran conjugatessynthesis, characterization, and biological evaluation. Medicinal Chemistry Research, Online First, 24 May 2010. DOI: 10.1007/s00044-010-9355-9. 10.1007/s00044-010-9355-9Suche in Google Scholar
[16] San-Miguel, B., Alvarez, M., Culebras, J. M., González-Gallego, J., & Tuñón, M. J. (2006). N-acetyl-cysteine protects liver from apoptotic death in an animal model of fulminant hepatic failure. Apoptosis, 11, 1945–1957. DOI: 10.1007/s10495-006-0090-0. http://dx.doi.org/10.1007/s10495-006-0090-010.1007/s10495-006-0090-0Suche in Google Scholar PubMed
[17] Santos, N. A. G., Medina, W. S. G., Martins, N. M., Carvalho Rodrigues, M. A., Curti, C., & Santos, A. C. (2008). Involvement of oxidative stress in the hepatotoxicity induced by aromatic antiepileptic drugs. Toxicology in Vitro, 22, 1820–1824. DOI: 10.1016/j.tiv.2008.08.004. http://dx.doi.org/10.1016/j.tiv.2008.08.00410.1016/j.tiv.2008.08.004Suche in Google Scholar PubMed
[18] Sauvé, G., Bresson-Hadni, S., Prost, P., Le Calvez, S., Becker, M.-C., Galmiche, J., Carbillet, J.-P., & Miguet, J.-P. (2000). Acute hepatitis after lamotrigine administration. Digestive Diseases and Sciences, 45, 1874–1877. DOI: 10.1023/A:1005593119425. http://dx.doi.org/10.1023/A:100559311942510.1023/A:1005593119425Suche in Google Scholar
[19] Serwetman, L. R. C., Krikorian, S. A., & Javedan, H. (2008). Rash and liver dysfunction related to lamotrigine therapy. The Journal of Pharmacy Technology, 24, 17–21. 10.1177/875512250802400105Suche in Google Scholar
[20] Shorvon, S., & Stefan, H. (1997). Overview of the safety of newer antiepileptic drugs. Epilepsia, 38, S45–S51. DOI: 10.1111/j.1528-1157.1997.tb04519.x. http://dx.doi.org/10.1111/j.1528-1157.1997.tb04519.x10.1111/j.1528-1157.1997.tb04519.xSuche in Google Scholar PubMed
[21] Siritantikorn, A., Johansson, K., Åhlen, K., Rinaldi, R., Suthiphongchai, T., Wilairat, P., & Morgenstern, R. (2007). Protection of cells from oxidative stress by microsomal glutathione transferase 1. Biochemical and Biophysical Research Communications, 355, 592–596. DOI: 10.1016/j.bbrc.2007.02.018. http://dx.doi.org/10.1016/j.bbrc.2007.02.01810.1016/j.bbrc.2007.02.018Suche in Google Scholar PubMed
[22] Tanaka, K., & Kawasaki, Y. (1957). A group of compounds possessing anticonvulsant activity In the maximal electroshock seizure test. The Japanese Journal of Pharmacology, 6, 115–121. DOI: 10.1254/jjp.6.115. http://dx.doi.org/10.1254/jjp.6.11510.1016/S0021-5198(19)65285-6Suche in Google Scholar
[23] Younis, H. S., Hoglen, N. C., Kuester, R. K., Gunawardhana, L., & Sipes, I. G. (2000). 1,2-Dichlorobenzene-mediated hepatocellular oxidative stress in Fischer-344 and Sprague-Dawley rats. Toxicology and Applied Pharmacology, 163, 141–148. DOI: 10.1006/taap.1999.8860. http://dx.doi.org/10.1006/taap.1999.886010.1006/taap.1999.8860Suche in Google Scholar PubMed
© 2010 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Application of polyaniline as an efficient and novel adsorbent for azo dyes removal from textile wastewaters
- Enzymatic synthesis and analytical monitoring of terpene ester by 1H NMR spectroscopy
- Effect of fiber modification with carboxymethyl cellulose on the efficiency of a microparticle flocculation system
- Synthesis, crystal structure, and thermal analysis of a copper(II) complex with imidazo[4,5-f]1,10-phenantroline
- Hydrothermal synthesis of core-shell structured PS@GdPO4:Tb3+/Ce3+ spherical particles and their luminescence properties
- Optical characterisation of organosilane-modified nanocrystalline diamond films
- Synthesis, optical, and spectroscopic characterisation of substituted 3-phenyl-2-arylacrylonitriles
- A new group of potential antituberculotics: N-(2-pyridylmethyl)salicylamides and N-(3-pyridylmethyl)salicylamides
- Synthesis and antimicrobial properties of new 2-((4-ethylphenoxy)methyl)benzoylthioureas
- Synthesis, characterisation, and biological activity of three new amide prodrugs of lamotrigine with reduced hepatotoxicity
- Comparative study of CTAB adsorption on bituminous coal and clay mineral
- Density of the systems (NaF/AlF3)—AlPO4 and (NaF/AlF3)—NaVO3
- Semiquinol and phenol compounds from seven Senecio species
- Determination of the enthalpy of fusion of K3NbO2F4
Artikel in diesem Heft
- Application of polyaniline as an efficient and novel adsorbent for azo dyes removal from textile wastewaters
- Enzymatic synthesis and analytical monitoring of terpene ester by 1H NMR spectroscopy
- Effect of fiber modification with carboxymethyl cellulose on the efficiency of a microparticle flocculation system
- Synthesis, crystal structure, and thermal analysis of a copper(II) complex with imidazo[4,5-f]1,10-phenantroline
- Hydrothermal synthesis of core-shell structured PS@GdPO4:Tb3+/Ce3+ spherical particles and their luminescence properties
- Optical characterisation of organosilane-modified nanocrystalline diamond films
- Synthesis, optical, and spectroscopic characterisation of substituted 3-phenyl-2-arylacrylonitriles
- A new group of potential antituberculotics: N-(2-pyridylmethyl)salicylamides and N-(3-pyridylmethyl)salicylamides
- Synthesis and antimicrobial properties of new 2-((4-ethylphenoxy)methyl)benzoylthioureas
- Synthesis, characterisation, and biological activity of three new amide prodrugs of lamotrigine with reduced hepatotoxicity
- Comparative study of CTAB adsorption on bituminous coal and clay mineral
- Density of the systems (NaF/AlF3)—AlPO4 and (NaF/AlF3)—NaVO3
- Semiquinol and phenol compounds from seven Senecio species
- Determination of the enthalpy of fusion of K3NbO2F4