Home Synthesis, characterisation, and biological activity of three new amide prodrugs of lamotrigine with reduced hepatotoxicity
Article
Licensed
Unlicensed Requires Authentication

Synthesis, characterisation, and biological activity of three new amide prodrugs of lamotrigine with reduced hepatotoxicity

  • Saurabh Sinha EMAIL logo , Prabhat Shrivastava and Sushant Shrivastava
Published/Copyright: December 30, 2010
Become an author with De Gruyter Brill

Abstract

Lamotrigine (LTG) is an antiepileptic drug used for the prevention of convulsions. Except several known side effects, hepatic dysfunction is also reported. Hepatotoxic side effects occur due to the dichlorophenyl moiety which develops an abnormally low level of glutathione. Depletion of glutathione causes oxidative stress and hepatic cell damage. The goal of the present study was to test the action and side effects of the three compounds synthesised and compared to LTG. Three amide prodrugs of LTG were synthesised by its reaction with N-acetylamino acids, viz, glycine, glutamic acid, and methionine. Purified synthesised prodrugs were subjected to thin layer chromatography, melting point, solubility and partition coefficients determination and characterised by UV, FTIR, 1H and 13C NMR spectroscopy. The synthesised prodrugs were subjected to in vitro hydrolysis and to anticonvulsant and hepatotoxic activity studies. Significant reduction in hepatotoxicity and comparable anticonvulsant activities were obtained in all synthesised prodrugs as compared to LTG.

[1] Attwell, P. J. E., Singh Kent, N., Jane, D. E., Croucher, M. J., & Bradford, H. F. (1998). Anticonvulsant and glutamate release-inhibiting properties of the highly potent metabotropic glutamate receptor agonist (2S,2′R,3′R)-2-(2′,3′-dicarboxycyclopropyl)glycine (DCG-IV). Brain Research, 805, 138–143. DOI: 10.1016/S0006-8993(98)00698-2. http://dx.doi.org/10.1016/S0006-8993(98)00698-210.1016/S0006-8993(98)00698-2Search in Google Scholar

[2] Barbosa, N. R., & Mídio, A. F. (2000). Validated highperformance liquid chromatographic method for the determination of lamotrigine in human plasma. Journal of Chromatography B, 741, 289–293. DOI: 10.1016/S0378-4347(00)00102-X. http://dx.doi.org/10.1016/S0378-4347(00)00102-X10.1016/S0378-4347(00)00102-XSearch in Google Scholar

[3] Dakin, H. D. (1929). The condensation of aromatic aldehydes with glycine and acetylglycine. The Journal of Biological Chemistry, LXXXII, 439–446. 10.1016/S0021-9258(20)78291-8Search in Google Scholar

[4] du Vigneaud, V., Kilmer, G. W., Rachele, J. R., & Cohn, M. (1944). On the mechanism of the conversion in vivo of methionine to cystine. The Journal of Biological Chemistry, 155, 645–651. 10.1016/S0021-9258(18)51196-0Search in Google Scholar

[5] Fayad, M., Choueiri, R., & Mikati, M. (2000). Potential hepatotoxicity of lamotrigine. Pediatric Neurology, 22, 49–52. DOI: 10.1016/S0887-8994(99)00106-X. http://dx.doi.org/10.1016/S0887-8994(99)00106-X10.1016/S0887-8994(99)00106-XSearch in Google Scholar

[6] GraphPad Software, Inc. (2009). GraphPad Prism, Version 5.0 for Windows. La Jolla, CA, USA: GraphPad Software, Inc. Search in Google Scholar

[7] Maggs, J. L., Naisbitt, D. J., Tettey, J. N. A., Pirmohamed, M., & Park, B. K. (2000). Metabolism of lamotrigine to a reactive arene oxide intermediate. Chemical Research in Toxicology, 13, 1075–1081. DOI: 10.1021/tx0000825. http://dx.doi.org/10.1021/tx000082510.1021/tx0000825Search in Google Scholar PubMed

[8] Makin, A. J., Fitt, S., & Williams, R. (1995). Fulminant hepatic failure induced by lamotrigine. British Medical Journal, 311, 292. 10.1136/bmj.311.7000.292bSearch in Google Scholar PubMed PubMed Central

[9] May, T. W., Rambeck, B., & Jürgens, U. (1996). Serum concentrations of lamotrigine in epileptic patients: the influence of dose and comedication. Therapeutic Drug Monitoring, 18, 523–531. DOI: 10.1097/00007691-199610000-00001. http://dx.doi.org/10.1097/00007691-199610000-0000110.1097/00007691-199610000-00001Search in Google Scholar PubMed

[10] Meshkibaf, M. H., Ebrahimi, A., Ghodsi, R., & Ahmadi, A. (2006). Chronic effects of lamotrigine on liver function in adult male rats. Indian Journal of Clinical Biochemistry, 21, 161–164. DOI: 10.1007/BF02913087. http://dx.doi.org/10.1007/BF0291308710.1007/BF02913087Search in Google Scholar PubMed PubMed Central

[11] Moeller, K. E., Wei, L., Jewell, A. D., & Carver, L. A. (2008). Acute hepatotoxicity associated with lamotrigine. The American Journal of Psychiatry, 165, 539–540. DOI: 10.1176/appi.ajp.2007.07050728. http://dx.doi.org/10.1176/appi.ajp.2007.0705072810.1176/appi.ajp.2007.07050728Search in Google Scholar PubMed

[12] Nam, N.-H., Kim, Y., You, Y.-J., Hong, D.-H., Kim, H.-M., & Ahn, B.-Z. (2003). Water soluble prodrugs of the antitumor agent 3-[(3-amino-4-methoxy)phenyl]-2-(3,4,5-trimethoxyphenyl)cyclopent-2-ene-1-one. Bioorganic & Medicinal Chemistry, 11, 1021–1029. DOI: 10.1016/S0968-0896(02)00514-X. http://dx.doi.org/10.1016/S0968-0896(02)00514-X10.1016/S0968-0896(02)00514-XSearch in Google Scholar

[13] Nedelcheva, V. Gut, I., Souček, P., & Frantík, E. (1998). Cytochrome P450 catalyzed oxidation of monochlorobenzene, 1,2- and 1,4-dichlorobenzene in rat, mouse, and human liver microsomes. Chemico-Biological Interactions, 115, 53–70. DOI: 10.1016/S0009-2797(98)00058-1. http://dx.doi.org/10.1016/S0009-2797(98)00058-110.1016/S0009-2797(98)00058-1Search in Google Scholar

[14] Overstreet, K., Costanza, C., Behling, C., Hassanin, T., & Masliah, E. (2002). Fatal progressive hepatic necrosis associated with lamotrigine treatment: A case report and literature review. Digestive Diseases and Sciences, 47, 1921–1925. DOI: 10.1023/A:1019627618972. http://dx.doi.org/10.1023/A:101962761897210.1023/A:1019627618972Search in Google Scholar

[15] Pugazhendhy, S., Shrivastava, P. K., Sinha, S. K., & Shrivastava, S. K. (2010). Lamotrigine-dextran conjugatessynthesis, characterization, and biological evaluation. Medicinal Chemistry Research, Online First, 24 May 2010. DOI: 10.1007/s00044-010-9355-9. 10.1007/s00044-010-9355-9Search in Google Scholar

[16] San-Miguel, B., Alvarez, M., Culebras, J. M., González-Gallego, J., & Tuñón, M. J. (2006). N-acetyl-cysteine protects liver from apoptotic death in an animal model of fulminant hepatic failure. Apoptosis, 11, 1945–1957. DOI: 10.1007/s10495-006-0090-0. http://dx.doi.org/10.1007/s10495-006-0090-010.1007/s10495-006-0090-0Search in Google Scholar PubMed

[17] Santos, N. A. G., Medina, W. S. G., Martins, N. M., Carvalho Rodrigues, M. A., Curti, C., & Santos, A. C. (2008). Involvement of oxidative stress in the hepatotoxicity induced by aromatic antiepileptic drugs. Toxicology in Vitro, 22, 1820–1824. DOI: 10.1016/j.tiv.2008.08.004. http://dx.doi.org/10.1016/j.tiv.2008.08.00410.1016/j.tiv.2008.08.004Search in Google Scholar PubMed

[18] Sauvé, G., Bresson-Hadni, S., Prost, P., Le Calvez, S., Becker, M.-C., Galmiche, J., Carbillet, J.-P., & Miguet, J.-P. (2000). Acute hepatitis after lamotrigine administration. Digestive Diseases and Sciences, 45, 1874–1877. DOI: 10.1023/A:1005593119425. http://dx.doi.org/10.1023/A:100559311942510.1023/A:1005593119425Search in Google Scholar

[19] Serwetman, L. R. C., Krikorian, S. A., & Javedan, H. (2008). Rash and liver dysfunction related to lamotrigine therapy. The Journal of Pharmacy Technology, 24, 17–21. 10.1177/875512250802400105Search in Google Scholar

[20] Shorvon, S., & Stefan, H. (1997). Overview of the safety of newer antiepileptic drugs. Epilepsia, 38, S45–S51. DOI: 10.1111/j.1528-1157.1997.tb04519.x. http://dx.doi.org/10.1111/j.1528-1157.1997.tb04519.x10.1111/j.1528-1157.1997.tb04519.xSearch in Google Scholar PubMed

[21] Siritantikorn, A., Johansson, K., Åhlen, K., Rinaldi, R., Suthiphongchai, T., Wilairat, P., & Morgenstern, R. (2007). Protection of cells from oxidative stress by microsomal glutathione transferase 1. Biochemical and Biophysical Research Communications, 355, 592–596. DOI: 10.1016/j.bbrc.2007.02.018. http://dx.doi.org/10.1016/j.bbrc.2007.02.01810.1016/j.bbrc.2007.02.018Search in Google Scholar PubMed

[22] Tanaka, K., & Kawasaki, Y. (1957). A group of compounds possessing anticonvulsant activity In the maximal electroshock seizure test. The Japanese Journal of Pharmacology, 6, 115–121. DOI: 10.1254/jjp.6.115. http://dx.doi.org/10.1254/jjp.6.11510.1016/S0021-5198(19)65285-6Search in Google Scholar

[23] Younis, H. S., Hoglen, N. C., Kuester, R. K., Gunawardhana, L., & Sipes, I. G. (2000). 1,2-Dichlorobenzene-mediated hepatocellular oxidative stress in Fischer-344 and Sprague-Dawley rats. Toxicology and Applied Pharmacology, 163, 141–148. DOI: 10.1006/taap.1999.8860. http://dx.doi.org/10.1006/taap.1999.886010.1006/taap.1999.8860Search in Google Scholar PubMed

Published Online: 2010-12-30
Published in Print: 2011-2-1

© 2010 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 15.10.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-010-0094-7/html
Scroll to top button